Browsing by Subject "Real-time RT-PCR"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Nicotine coregulates multiple pathways involved in protein modification/degradation in rat brain(Elsevier, 2004) Kane, J. K.; Konu, Özlem; Ma, J. Z.; Li, M. D.Previously, we used cDNA microarrays to demonstrate that the phosphatidylinositol and MAP kinase signaling pathways are regulated by nicotine in different rat brain regions. In the present report, we show that, after exposure to nicotine for 14 days, ubiquitin, ubiquitin-conjugating enzymes, 20S and 19S proteasomal subunits, and chaperonin-containing TCP-1 protein (CCT) complex members are upregulated in rat prefrontal cortex (PFC) while being downregulated in the medial basal hypothalamus (MBH). In particular, relative to saline controls, ubiquitins B and C were upregulated by 33% and 47% (P<0.01), respectively, in the PFC. The proteasome beta subunit 1 (PSMB1) and 26S ATPase 3 (PSMC3) genes were upregulated in the PFC by 95% and 119% (P<0.001), respectively. In addition to the protein degradation pathway of the ubiquitin-proteasome complexes, we observed in the PFC an increase in the expression of small, ubiquitin-related modifiers (SUMO) 1 and 2 by 80% and 33%, respectively (P<0.001), and in 3 of 6 CCT subunits by up to 150% (P<0.0001). To a lesser extent, a change in the opposite direction was obtained in the expression of the same gene families in the MBH. Quantitative real-time RT-PCR was used to validate the microarray results obtained with some representative genes involved in these pathways. Taken together, our results suggest that, in response to systemic nicotine administration, the ubiquitin-proteasome, SUMO, and chaperonin complexes provide an intricate control mechanism to maintain cellular homeostasis, possibly by regulating the composition and signaling of target neurons in a region-specific manner.Item Open Access Regulation of Homer and group I metabotropic glutamate receptors by nicotine(Wiley-Blackwell Publishing Ltd., 2005) Kane, J. K.; Hwang, Y.; Konu, O.; Loughlin, S. E.; Leslie, F. M.; Li, M. D.The present study focuses on the nicotine-induced modulation of mRNA and protein expression of a number of genes involved in glutamatergic synaptic transmission in rat brain over different time periods of exposure. A subchronic (3 days) but not the chronic (7 or 14 days) administration of nicotine resulted in the up-regulation of Homer2a/b mRNA in the amygdala while in the ventral tegmental area (VTA) no change in expression of either Homer2a/b or Homer1b/c was observed. Although the increase in Homer2a/b mRNA was not translated into the protein level in the amygdala, a slight but significant up-regulation of Homer1b/c protein was observed in the same region at day 3. Both Homer forms were up-regulated at the protein level in the VTA at day 3. In the nucleus accumbens, 14 days of nicotine treatment up-regulated mRNA of Homer2b/c by 68.2% (P < 0.05), while the short form Homer1a gene was down-regulated by 65.0% at day 3 (P < 0.05). In regard to other components of the glutamatergic signalling, we identified an acute and intermittent increase in the mRNA and protein levels of mGluR1 and mGluR5 in the amygdala. In the VTA, however, the effects of nicotine on mGluR mRNA expression were long-lasting but rather specific to mGluR1. Nevertheless, mGluR1 protein levels in the VTA area were up-regulated only at day 3, as in the amygdala. These data provide further evidence for the involvement of nicotine in the glutamatergic neuronal synaptic activity in vivo, suggesting a role for the newly identified Homer proteins in this paradigm.