Browsing by Subject "Real Schur factorization"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Block SOR for Kronecker structured representations(Elsevier, 2004) Buchholz, P.; Dayar, TuğrulThe Kronecker structure of a hierarchical Markovian model (HMM) induces nested block partitionings in the transition matrix of its underlying Markov chain. This paper shows how sparse real Schur factors of certain diagonal blocks of a given partitioning induced by the Kronecker structure can be constructed from smaller component matrices and their real Schur factors. Furthermore, it shows how the column approximate minimum degree (COLAMD) ordering algorithm can be used to reduce fill-in of the remaining diagonal blocks that are sparse LU factorized. Combining these ideas, the paper proposes three-level block successive over-relaxation (BSOR) as a competitive steady state solver for HMMs. Finally, on a set of numerical experiments it demonstrates how these ideas reduce storage required by the factors of the diagonal blocks and improve solution time compared to an all LU factorization implementation of the BSOR solver. © 2004 Elsevier Inc. All rights reserved.Item Open Access Block SOR preconditioned projection methods for Kronecker structured Markovian representations(SIAM, 2005) Buchholz, Peter; Dayar, TuğrulKronecker structured representations are used to cope with the state space explosion problem in Markovian modeling and analysis. Currently, an open research problem is that of devising strong preconditioners to be used with projection methods for the computation of the stationary vector of Markov chains (MCs) underlying such representations. This paper proposes a block successive overrelaxation (BSOR) preconditioner for hierarchical Markovian models (HMMs1) that are composed of multiple low-level models and a high-level model that defines the interaction among low-level models. The Kronecker structure of an HMM yields nested block partitionings in its underlying continuous-time MC which may be used in the BSOR preconditioner. The computation of the BSOR preconditioned residual in each iteration of a preconditioned projection method becomes the problem of solving multiple nonsingular linear systems whose coefficient matrices are the diagonal blocks of the chosen partitioning. The proposed BSOR preconditioner solves these systems using sparse LU or real Schur factors of diagonal blocks. The fill-in of sparse LU factorized diagonal blocks is reduced using the column approximate minimum degree (COLAMD) ordering. A set of numerical experiments is presented to show the merits of the proposed BSOR preconditioner.