Browsing by Subject "Read alignment"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access MAGNET: understanding and improving the accuracy of genome pre-alignment filtering(I P S I, 2017) Alser, M.; Mutlu, O.; Alkan C.In the era of high throughput DNA sequencing (HTS) technologies, calculating the edit distance (i.e.,the minimum number of substitutions, insertions, and deletionsbetween a pair of sequences) forbillions of genomicsequences is the computational bottleneck intoday’s read mappers. The shifted Hamming distance (SHD) algorithm proposes afast filtering strategy that can rapidly filter out invalid mappings that have more edits than allowed. However, SHD shows high inaccuracy in its filtering by admitting invalid mappings to be marked as correct ones. This wastesthe execution time and imposesa large computational burden. In this work, we comprehensively investigate foursources that lead to the filtering inaccuracy. We propose MAGNET, anewfiltering strategy that maintains high accuracy across different edit distance thresholds and data sets. It significantly improvestheaccuracy of pre-alignment filtering by one to twoordersof magnitude.The MATLAB implementationsof MAGNETand SHDareopen source and available at:https://github.com/BilkentCompGen/MAGNET.Item Open Access SeGraM: A universal hardware accelerator for genomic sequence-to-graph and sequence-to-sequence mapping(Association for Computing Machinery, 2020-06-11) Cali, D.Ş; Kanellopoulos, K.; Lindegger, J.; Bingöl, Zülal; Kalsi, G.S.; Zuo, Z.; Fırtına, Can; Cavlak, M.B.; Kim, J.; Ghiasi, N.M.; Singh, G.; Gómez-Luna, J.; Almadhoun Alserr, N.; Alser, M.; Subramoney, S.; Alkan, Can; Ghose, S.; Mutlu, O.A critical step of genome sequence analysis is the mapping of sequenced DNA fragments (i.e., reads) collected from an individual to a known linear reference genome sequence (i.e., sequence-to-sequence mapping). Recent works replace the linear reference sequence with a graph-based representation of the reference genome, which captures the genetic variations and diversity across many individuals in a population. Mapping reads to the graph-based reference genome (i.e., sequence-to-graph mapping) results in notable quality improvements in genome analysis. Unfortunately, while sequence-to-sequence mapping is well studied with many available tools and accelerators, sequence-to-graph mapping is a more difficult computational problem, with a much smaller number of practical software tools currently available. We analyze two state-of-the-art sequence-to-graph mapping tools and reveal four key issues. We find that there is a pressing need to have a specialized, high-performance, scalable, and low-cost algorithm/hardware co-design that alleviates bottlenecks in both the seeding and alignment steps of sequence-to-graph mapping. Since sequence-to-sequence mapping can be treated as a special case of sequence-to-graph mapping, we aim to design an accelerator that is efficient for both linear and graph-based read mapping. To this end, we propose SeGraM, a universal algorithm/hardware co-designed genomic mapping accelerator that can effectively and efficiently support both sequence-to-graph mapping and sequence-to-sequence mapping, for both short and long reads. To our knowledge, SeGraM is the first algorithm/hardware co-design for accelerating sequence-to-graph mapping. SeGraM consists of two main components: (1) MinSeed, the first minimizer-based seeding accelerator, which finds the candidate locations in a given genome graph; and (2) BitAlign, the first bitvector-based sequence-to-graph alignment accelerator, which performs alignment between a given read and the subgraph identified by MinSeed. We couple SeGraM with high-bandwidth memory to exploit low latency and highly-parallel memory access, which alleviates the memory bottleneck. We demonstrate that SeGraM provides significant improvements for multiple steps of the sequence-to-graph (i.e., S2G) and sequence-to-sequence (i.e., S2S) mapping pipelines. First, SeGraM outperforms state-of-the-art S2G mapping tools by 5.9×/3.9× and 106×/- 742× for long and short reads, respectively, while reducing power consumption by 4.1×/4.4× and 3.0×/3.2×. Second, BitAlign outperforms a state-of-the-art S2G alignment tool by 41×-539× and three S2S alignment accelerators by 1.2×-4.8×. We conclude that SeGraM is a high-performance and low-cost universal genomics mapping accelerator that efficiently supports both sequence-to-graph and sequence-to-sequence mapping pipelines.