Browsing by Subject "Re-ranking"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Görsel arama sonuçlarının çoklu örnekle öğrenme yöntemiyle yeniden sıralanması(IEEE, 2012-04) Şener, Fadime; Cinbiş, N. I.; Duygulu-Şahin, PınarBu çalışmada, çoklu öğrenme yöntemi ile metin tabanlı arama motorlarından elde edilen görsel sorgu sonuçlarını iyileştirmek için geliştirilmiş olan, zayıf denetimli öğrenen bir yöntem sunulmaktadır. Bu yöntemde arama motorundan dönen sonuçlar zayıf pozitif kabul edilerek, sorgu kategorisinden görüntü içermeyen negatif görüntüler de kullanılarak; çoklu örnekle öğrenme için torbalar oluşturulmaktadır. Bu torbalar ve veri kümesindeki örnekler arasında kurulan torba-örnek benzerliğinden yararlanarak; torbalar yeni bir örnek uzayına taşınmakta ve problem klasik bir denetimli öğrenme problemi haline getirilmektedir. Daha sonra, lineer destek vektör makinesi (DVM) kullanılarak her sorgu için sınıflandırma modelleri oluşturulmaktadır. Elde edilen sınıflandırma değerlerine göre görseller yeniden sıralanmış ve arama motorundan gelen sonuçların iyileştirildiği görülmüştür. Bu çerçevede, torba boyları arasında bir örüntü bulmak için yaptığımız deneyleri sunmaktayız. In this study, we propose a weakly-supervised multiple instance learning (MIL) method to improve the results of text-based image search engines. In this approach, ranked image list of search engine for a keyword query is treated as weak-positive input data, and with additional negative input data, multiple instance learning bags are constructed. Then, Multiple Instance problem is converted to a standard supervised learning problem by mapping each bag into a feature space defined by instances in training bags using a bag-instance similarity measure. At the end, linear SVM is used to construct a classifier to re-rank keyword-based image search data. Based on the classification scores, we re-rank the images and improve precision over the search engine results. In this respect, we also present our experiments conducted to find a pattern for multiple instance bag sizes to obtain better average precision. © 2012 IEEE.Item Open Access MUCKE participation at retrieving diverse social images task of MediaEval 2013(CEUR-WS, 2013) Armağan, Anıl; Popescu, A.; Duygulu, PınarThe Mediaeval 2013 Retrieving Diverse Social Image Task addresses the challenge of improving both relevance and diversity of photos in a retrieval task on Flickr. We propose a clustering based technique that exploits both textual and visual information. We introduce a k-Nearest Neighbor (k-NN) inspired re-ranking algorithm that is applied before clustering to clean the dataset. After the clustering step, we exploit social cues to rank clusters by social relevance. From those ranked clusters images are retrieved according to their distance to cluster centroids.Item Open Access Re-ranking of web image search results using a graph algorithm(IEEE, 2008-12) Zitouni, Hilal; Sevil, Sare; Özkan, Derya; Duygulu, PınarWe propose a method to improve the results of image search engines on the Internet to satisfy users who desire to see relevant images in the first few pages. The method re-ranks the results of text based systems by incorporating visual similarity of the resulting images. We observe that, together with many unrelated ones, results of text based systems include a subset of correct images, and this set is, in general, the largest one which has the most similar images compared to other possible subsets. Based on this observation, we present similarities of all images in a graph structure, and find the densest component that corresponds to the largest set of most similar subset of images. Then, to re-rank the results, we give higher priority to the images in the densest component, and rank the others based on their similarities to the images in the densest component. The experiments are carried out on 18 category of images from [8]. © 2008 IEEE.