Browsing by Subject "Rationing"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access A dynamic rationing policy for continuous-review inventory systems(Elsevier, 2010) Fadıloǧlu, M. M.; Bulut, Ö.Stock rationing is an inventory policy that allows differential treatment of customer classes without using separate inventories. In this paper, we propose a dynamic rationing policy for continuous-review inventory systems, which utilizes the information on the status of the outstanding replenishment orders. For both backordering and lost sales environments, we conduct simulation studies to compare the performance of the dynamic policy with the static critical level and the common stock policies and quantify the gain obtained. We propose two new bounds on the optimum dynamic rationing policy that enables us to tell how much of the potential gain the proposed dynamic policy realizes. We discuss the conditions under which stock rationing - both dynamic and static - is beneficial and assess the value of the dynamic policy.Item Open Access Spare parts inventory management with demand lead times and rationing(Taylor & Francis, 2007) Koçaǧa, Y. L.; Şen, A.We study an inventory system that consists of two demand classes. The orders in the first class need to be satisfied immediately, whereas the orders in the second class are to be filled in a given demand lead time. The two classes are also of different criticality. For this system, we propose a policy that rations the non-critical orders. Under a one-for-one replenishment policy with backordering and for Poisson demand arrivals for both classes, we first derive expressions for the service levels of both classes. The service level for the critical class is an approximation, whereas the service level for the non-critical class is exact. We then conduct a computational study to show that our approximation works reasonably, the benefits of rationing can be substantial, and the incorporation of demand lead time provides more value when the demand class with demand lead time is the critical class. The research is motivated by the spare parts service system of a major capital equipment manufacturer that faces two types of demand. For this company, the critical down orders need to be satisfied immediately, while the less critical maintenance orders can be satisfied after a fixed demand lead time. We conduct a case study with 64 representative parts and show that significant savings (as much as 14% on inventory on hand) are possible through incorporation of demand lead times and rationing.Item Open Access Using imperfect advance demand information in ordering and rationing decisions(Elsevier, 2009) Tan, T.; Güllü, R.; Erkip, N.In this paper, we consider an inventory problem with two demand classes having different priorities. The appropriate policy of rationing the available stock, i.e. reserving some stock for meeting prospective future demand of preferred customers at the expense of deliberately losing some of the currently materialized demand of lower demand class(es), relies on the estimation of the future demand. Utilizing current signals on future demand, which we refer to as imperfect advance demand information (ADI), decreases uncertainty on future demand and may help to make better decisions on when to start rejecting lower class demand. We develop a model that incorporates imperfect ADI with inventory ordering (replenishment) decision and rationing available stock. In a two-period setting, we show some structural properties, solve the rationing problem, and propose solution methods based on Monte Carlo simulation for the ordering problem. We conduct numerical tests to measure the impact of system parameters on the expected value of imperfect ADI, and provide useful managerial insights.