Browsing by Subject "Rapid convergence"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Computational analysis of complicated metamaterial structures using MLFMA and nested preconditioners(IEEE, 2007-11) Ergül, Özgür; Malas, Tahir; Yavuz, Ç; Ünal, Alper; Gürel, LeventWe consider accurate solution of scattering problems involving complicated metamaterial (MM) structures consisting of thin wires and split-ring resonators. The scattering problems are formulated by the electric-field integral equation (EFIE) discretized with the Rao-Wilton- Glisson basis functions defined on planar triangles. The resulting dense matrix equations are solved iteratively, where the matrix-vector multiplications that are required by the iterative solvers are accelerated with the multilevel fast multipole algorithm (MLFMA). Since EFIE usually produces matrix equations that are ill-conditioned and difficult to solve iteratively, we employ nested preconditioners to achieve rapid convergence of the iterative solutions. To further accelerate the simulations, we parallelize our algorithm and perform the solutions on a cluster of personal computers. This way, we are able to solve problems of MMs involving thousands of unit cells.Item Open Access Electromagnetic imaging of three-dimensional dielectric objects with Newton minimization(IEEE, 2014) Etminan, Aslan; Sadeghi, Alireza; Gürel, LeventWe present a general framework for detecting the shape and electrical properties of unknown objects by using the Newton minimization approach for solving inverse-scattering problems. This procedure is performed by evolving an initial-guess object iteratively until the cost function decreases to a desired value. Rapid convergence of this method is demonstrated by some numerical results.Item Open Access MLFMA solutions of transmission problems Involving realistic metamaterial walls(IEEE, 2007-08) Ergül, Özgür; Ünal, Alper; Gürel, LeventWe present the solution of multilayer metamaterial (MM) structures containing large numbers of unit cells, such as split-ring resonators. Integral-equation formulations of scattering problems are solved iteratively by employing a parallel implementation of the multilevel fast multipole algorithm. Due to ill-conditioned nature of the problems, advanced preconditioning techniques are used to obtain rapid convergence in the iterative solutions. By constructing a sophisticated simulation environment, we accurately and efficiently investigate large and complicated MM structures. © 2007 IEEE.