Browsing by Subject "Radioactive waste"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Surface spectroscopic studies of Cs+, and Ba2+ sorption on chlorite-illite mixed clay(De Gruyter Oldenbourg, 2000) Shahwan, T.; Sayan, S.; Erten, H. N.; Black, L.; Hallam, K. R.; Allen, G. C.The sorption behavior of Cs+, and Ba2+ on natural clay was investigated using ToF-SIMS, XPS, and XRD. The natural clay was composed mainly of chlorite and illite in addition to quartz and calcite. Depth profiling up to 70 Å was performed at 10 Å steps utilizing ToF-SIMS to study the amount of sorbed Cs+ and Ba2+ as a function of depth in the clay matrix. The results suggest that Cs+ and Ba2+ ions were sorbed primarily by ion exchange coupled with hydrolytic sorption. According to ToF-SIMS and XPS results, the total sorbed amount of Ba2+ was larger than that of Cs+. Quantitative determination of the primary cations within the analyzed clay before and after sorption indicated that for Ba2+ sorption, Ca2+, Mg2+ and for Cs+ sorption Ca2+, K+ were the major exchanging ions. The XRD spectra of Ba-sorbed clay contained new peaks that were identified as BaCO3.Item Open Access Uptake of Ba2+ ions by natural bentonite and CaCO3: a radiotracer, EDXRF and PXRD study(Akademiai Kiado Rt., 2002) Shahwan, T.; Atesin, A. C.; Erten, H. N.; Zararsiz, A.Ba2+ uptake by natural bentonite, CaCO3 in addition to a number of bentonite-CaCO3 mixtures with variable compositions as a function of pH and Ba2+ concentration was studied. Radiotracer method, EDXRF, and PXRD were used. The results of radiotracer experiments showed that the uptake of Ba2+ by CaCO3 was larger than its uptake by natural bentonite samples, particularly at low initial concentrations of Ba2+ and higher pH values. This finding was supported by the EDXRF results, According to the sorption data, the apparent ΔG° values of sorption were in the range -9±1 to -13±3 kJ/mol. The PXRD studies revealed the formation of BaCO3 upon sorption of Ba2+ on pure CaCO3 and on some of the bentonite-CaCO3 mixtures.