Browsing by Subject "RNA Interference"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Coiled-Coil Domain Containing Protein 124 Is a Novel Centrosome and Midbody Protein That Interacts with the Ras-Guanine Nucleotide Exchange Factor 1B and Is Involved in Cytokinesis(2013) Telkoparan P.; Erkek, S.; Yaman, E.; Alotaibi H.; Bayik, D.; Tazebay, U.H.Cytokinetic abscission is the cellular process leading to physical separation of two postmitotic sister cells by severing the intercellular bridge. The most noticeable structural component of the intercellular bridge is a transient organelle termed as midbody, localized at a central region marking the site of abscission. Despite its major role in completion of cytokinesis, our understanding of spatiotemporal regulation of midbody assembly is limited. Here, we report the first characterization of coiled-coil domain-containing protein-124 (Ccdc124), a eukaryotic protein conserved from fungi-to-man, which we identified as a novel centrosomal and midbody protein. Knockdown of Ccdc124 in human HeLa cells leads to accumulation of enlarged and multinucleated cells; however, centrosome maturation was not affected. We found that Ccdc124 interacts with the Ras-guanine nucleotide exchange factor 1B (RasGEF1B), establishing a functional link between cytokinesis and activation of localized Rap2 signaling at the midbody. Our data indicate that Ccdc124 is a novel factor operating both for proper progression of late cytokinetic stages in eukaryotes, and for establishment of Rap2 signaling dependent cellular functions proximal to the abscission site. © 2013 Telkoparan et al.Item Open Access Herpes simplex virus 1 amplicon vector-mediated siRNA targeting epidermal growth factor receptor inhibits growth of human glioma cells in vivo(2005) Saydam O.; Glauser, D.L.; Heid I.; Turkeri G.; Hilbe, M.; Jacobs, A.H.; Ackermann, M.; Fraefel, C.In primary glioblastomas and other tumor types, the epidermal growth factor receptor (EGFR) is frequently observed with alterations, such as amplification, structural rearrangements, or overexpression of the gene, suggesting an important role in glial tumorigenesis and progression. In this study, we investigated whether posttranscriptional gene silencing by vector-mediated RNAi to inhibit EGFR expression can reduce the growth of cultured human gli36 glioma cells. To "knock down" EGFR expression, we have created HSV-1-based amplicons that contain the RNA polymerase III-dependent H1 promoter to express double-stranded hairpin RNA directed against EGFR at two different locations (pHSVsiEGFR I and pHSVsiEGFR II). We demonstrate that both pHSVsiEGFR I and pHSVsiEGFR II mediated knock-down of transiently transfected full-length EGFR or endogenous EGFR in a dose-dependent manner. The knock-down of EGFR resulted in the growth inhibition of human glioblastoma (gli36-luc) cells both in culture and in athymic mice in vivo. Cell cycle analysis and annexin V staining revealed that siRNA-mediated suppression of EGFR induced apoptosis. Overall HSV-1 amplicons can mediate efficient and specific posttranscriptional gene silencing. Copyright © The American Society of Gene Therapy.