Browsing by Subject "RIMARC algorithm"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Application of the RIMARC algorithm to a large data set of action potentials and clinical parameters for risk prediction of atrial fibrillation(Springer, 2015) Ravens, U.; Katircioglu-Öztürk, D.; Wettwer, E.; Christ, T.; Dobrev, D.; Voigt, N.; Poulet, C.; Loose, S.; Simon, J.; Stein, A.; Matschke, K.; Knaut, M.; Oto, E.; Oto, A.; Güvenir, H. A.Ex vivo recorded action potentials (APs) in human right atrial tissue from patients in sinus rhythm (SR) or atrial fibrillation (AF) display a characteristic spike-and-dome or triangular shape, respectively, but variability is huge within each rhythm group. The aim of our study was to apply the machine-learning algorithm ranking instances by maximizing the area under the ROC curve (RIMARC) to a large data set of 480 APs combined with retrospectively collected general clinical parameters and to test whether the rules learned by the RIMARC algorithm can be used for accurately classifying the preoperative rhythm status. APs were included from 221 SR and 158 AF patients. During a learning phase, the RIMARC algorithm established a ranking order of 62 features by predictive value for SR or AF. The model was then challenged with an additional test set of features from 28 patients in whom rhythm status was blinded. The accuracy of the risk prediction for AF by the model was very good (0.93) when all features were used. Without the seven AP features, accuracy still reached 0.71. In conclusion, we have shown that training the machine-learning algorithm RIMARC with an experimental and clinical data set allows predicting a classification in a test data set with high accuracy. In a clinical setting, this approach may prove useful for finding hypothesis-generating associations between different parameters.Item Open Access Predictors of sinus rhythm after electrical cardioversion of atrial fibrillation: results from a data mining project on the Flec-SL trial data set(Oxford University Press, 2017) Oto, E.; Okutucu, S.; Katircioglu-Öztürk, D.; Güvenir, H. A.; Karaagaoglu, E.; Borggrefe, M.; Breithardt, G.; Goette, A.; Ravens, U.; Steinbeck, G.; Wegscheider, K.; Oto, A.; Kirchhof, P.Data mining is the computational process to obtain information from a data set and transform it for further use. Herein, through data mining with supportive statistical analyses, we identified and consolidated variables of the Flecainide Short-Long (Flec-SL—AFNET 3) trial dataset that are associated with the primary outcome of the trial, recurrence of persistent atrial fibrillation (AF) or death. Methods and results: The ‘Ranking Instances by Maximizing the Area under the ROC Curve’ (RIMARC) algorithm was applied to build a classifier that can predict the primary outcome by using variables in the Flec-SL dataset. The primary outcome was time to persistent AF or death. The RIMARC algorithm calculated the predictive weights of each variable in the Flec-SL dataset for the primary outcome. Among the initial 21 parameters, 6 variables were identified by the RIMARC algorithm. In univariate Cox regression analysis of these variables, increased heart rate during AF and successful pharmacological conversion (PC) to sinus rhythm (SR) were found to be significant predictors. Multivariate Cox regression analysis revealed successful PC as the single relevant predictor of SR maintenance. The primary outcome risk was 3.14 times (95% CI:1.7–5.81) lower in those who had successful PC to SR than those who needed electrical cardioversion. Conclusions: Pharmacological conversion of persistent AF with flecainide without the need for electrical cardioversion is a powerful and independent predictor of maintenance of SR. A strategy of flecainide pretreatment for 48 h prior to planned electrical cardioversion may be a useful planning of a strategy of long-term rhythm control.