Browsing by Subject "RACE"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access The characterization and potential functional role of wdr81, a novel zebrafish gene, associated with cerebellar ataxia, mental retardation and dysequilibrium syndrome (camrq) in humans(2016-04) Doldur Ballı, FüsunCerebellar ataxia, mental retardation and dysequilibrium syndrome (CAMRQ) is a neurodevelopmental disorder. The gene encoding WD repeat containing protein 81 (WDR81) was reported to be associated with CAMRQ2 [MIM 610185]. Human and mouse studies indicated the potential importance of WDR81 in neurodevelopment. The first aim in this study was to characterize the transcript and to reveal the expression profile of wdr81 in zebrafish. The second aim was to perform the initial characterization of wdr81 morphants. In silico analysis indicated that the conserved domains are shared in human, mouse and zebrafish orthologous proteins, implying a conserved function of WDR81 in three species. The characterization of the transcript revealed that wdr81 possessed one ORF and one 5’UTR structure. The predicted sequence for 3’UTR was confirmed along with detection of some variants and an insertion site in samples from ten developmental timepoints and in several adult tissues. This region was not detected in kidney, intestine and gills, which might be pointing out an alternative polyadenylation event. wdr81 appeared to be maternally supplied. 5 hpf and 18 hpf were detected as crucial timepoints regarding wdr81 expression. Expression of wdr81 was found to be increased in the eye and brain regions at 18 hpf and 48 hpf. wdr81 was found to be ubiquitously expressed in the adult zebrafish. The expression of wdr81 in the adult brain and eye was detected in several regions including retinal layers, presumptive Purkinje cells and some proliferative zones. The splice blocking morpholino which targets the exon 2-intron 2 junction of wdr81 worked at 3 tested doses; 2 ng, 4 ng and 8 ng. The effect of the wdr81 morpholino was detected to add the intron, which is downstream of the target exon, to the transcript and introduce a stop codon. Preliminary results indicated a significant reduction in the head sizes at a ratio of 3.88% (p:0.027) in the wdr81 morphant group compared to uninjected group and gbx2 expression was observed to be higher in wdr81 morphants compared to the control groups. In short, findings of this study emphasize the significance of wdr81 in neurodevelopment and suggest a potential role in neuronal proliferation. This study also serves as a basis for future functional studies.Item Open Access Characterization of a novel zebrafish (Danio rerio) gene, wdr81, associated with cerebellar ataxia, mental retardation and dysequilibrium syndrome (CAMRQ)(BioMed Central Ltd., 2015) Doldur-Balli, F.; Ozel, M. N.; Gulsuner, S.; Tekinay, A. B.; Ozcelik, T.; Konu, O.; Adams, M. M.Background: WDR81 (WD repeat-containing protein 81) is associated with cerebellar ataxia, mental retardation and disequilibrium syndrome (CAMRQ2, [MIM 610185]). Human and mouse studies suggest that it might be a gene of importance during neurodevelopment. This study aimed at fully characterizing the structure of the wdr81 transcript, detecting the possible transcript variants and revealing its expression profile in zebrafish, a powerful model organism for studying development and disease. Results: As expected in human and mouse orthologous proteins, zebrafish wdr81 is predicted to possess a BEACH (Beige and Chediak-Higashi) domain, a major facilitator superfamily domain and WD40-repeats, which indicates a conserved function in these species. We observed that zebrafish wdr81 encodes one open reading frame while the transcript has one 5' untranslated region (UTR) and the prediction of the 3' UTR was mainly confirmed along with a detected insertion site in the embryo and adult brain. This insertion site was also found in testis, heart, liver, eye, tail and muscle, however, there was no amplicon in kidney, intestine and gills, which might be the result of possible alternative polyadenylation processes among tissues. The 5 and 18 hpf were critical timepoints of development regarding wdr81 expression. Furthermore, the signal of the RNA probe was stronger in the eye and brain at 18 and 48 hpf, then decreased at 72 hpf. Finally, expression of wdr81 was detected in the adult brain and eye tissues, including but not restricted to photoreceptors of the retina, presumptive Purkinje cells and some neurogenic brains regions. Conclusions: Taken together these data emphasize the importance of this gene during neurodevelopment and a possible role for neuronal proliferation. Our data provide a basis for further studies to fully understand the function of wdr81.