Browsing by Subject "Query expansion"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Elicitation and use of relevance feedback information(Elsevier Ltd, 2006-01) Vechtomova, O.; Karamuftuoglu, M.The paper presents two approaches to interactively refining user search formulations and their evaluation in the new High Accuracy Retrieval from Documents (HARD) track of TREC-12. The first method consists of asking the user to select a number of sentences that represent documents. The second method consists of showing to the user a list of noun phrases extracted from the initial document set. Both methods then expand the query based on the user feedback. The TREC results show that one of the methods is an effective means of interactive query expansion and yields significant performance improvements. The paper presents a comparison of the methods and detailed analysis of the evaluation results. © 2004 Elsevier Ltd. All rights reserved.Item Open Access Query expansion with terms selected using lexical cohesion analysis of documents(Elsevier Ltd, 2007-07) Vechtomova, O.; Karamuftuoglu, M.We present new methods of query expansion using terms that form lexical cohesive links between the contexts of distinct query terms in documents (i.e., words surrounding the query terms in text). The link-forming terms (link-terms) and short snippets of text surrounding them are evaluated in both interactive and automatic query expansion (QE). We explore the effectiveness of snippets in providing context in interactive query expansion, compare query expansion from snippets vs. whole documents, and query expansion following snippet selection vs. full document relevance judgements. The evaluation, conducted on the HARD track data of TREC 2005, suggests that there are considerable advantages in using link-terms and their surrounding short text snippets in QE compared to terms selected from full-texts of documents. © 2006 Elsevier Ltd. All rights reserved.Item Open Access Turkish factoid question answering using answer pattern matching(2009) Pala Er, NagehanEfficiently locating information on the Web has become one of the most important challenges in the last decade. The Web Search Engines have been used to locate the documents containing the required information. However, in many situations a user wants a particular piece of information rather than a document set. Question Answering (QA) systems have addressed this problem and they return explicit answers to questions rather than set of documents. Questions addressed by QA systems can be categorized into five categories: factoid, list, definition, complex, and speculative questions. A factoid question has exactly one correct answer, and the answer is mostly a named entity like person, date, or location. In this thesis, we develop a pattern matching approach for a Turkish Factoid QA system. In TREC-10 QA track, most of the question answering systems used sophisticated linguistic tools. However, the best performing system at the track used only an extensive list of surface patterns; therefore, we decided to investigate the potential of answer pattern matching approach for our Turkish Factoid QA system. We try different methods for answer pattern extraction such as stemming and named entity tagging. We also investigate query expansion by using answer patterns. Several experiments have been performed to evaluate the performance of the system. Compared with the results of the other factoid QA systems, our methods have achieved good results. The results of the experiments show that named entity tagging improves the performance of the system.