Browsing by Subject "Query execution time"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Cost-aware strategies for query result caching in Web search engines(Association for Computing Machinery, 2011) Ozcan, R.; Altingovde, I. S.; Ulusoy, O.Search engines and large-scale IR systems need to cache query results for efficiency and scalability purposes. Static and dynamic caching techniques (as well as their combinations) are employed to effectively cache query results. In this study, we propose cost-aware strategies for static and dynamic caching setups. Our research is motivated by two key observations: (i) query processing costs may significantly vary among different queries, and (ii) the processing cost of a query is not proportional to its popularity (i.e., frequency in the previous logs). The first observation implies that cache misses have different, that is, nonuniform, costs in this context. The latter observation implies that typical caching policies, solely based on query popularity, can not always minimize the total cost. Therefore, we propose to explicitly incorporate the query costs into the caching policies. Simulation results using two large Web crawl datasets and a real query log reveal that the proposed approach improves overall system performance in terms of the average query execution time. © 2011 ACM.Item Open Access Implications of non-volatile memory as primary storage for database management systems(IEEE, 2017) Mustafa, Naveed Ul; Armejach, A.; Öztürk, Özcan; Cristal, A.; Unsal, O. S.Traditional Database Management System (DBMS) software relies on hard disks for storing relational data. Hard disks are cheap, persistent, and offer huge storage capacities. However, data retrieval latency for hard disks is extremely high. To hide this latency, DRAM is used as an intermediate storage. DRAM is significantly faster than disk, but deployed in smaller capacities due to cost and power constraints, and without the necessary persistency feature that disks have. Non-Volatile Memory (NVM) is an emerging storage class technology which promises the best of both worlds. It can offer large storage capacities, due to better scaling and cost metrics than DRAM, and is non-volatile (persistent) like hard disks. At the same time, its data retrieval time is much lower than that of hard disks and it is also byte-addressable like DRAM. In this paper, we explore the implications of employing NVM as primary storage for DBMS. In other words, we investigate the modifications necessary to be applied on a traditional relational DBMS to take advantage of NVM features. As a case study, we have modified the storage engine (SE) of PostgreSQL enabling efficient use of NVM hardware. We detail the necessary changes and challenges such modifications entail and evaluate them using a comprehensive emulation platform. Results indicate that our modified SE reduces query execution time by up to 40% and 14.4% when compared to disk and NVM storage, with average reductions of 20.5% and 4.5%, respectively. © 2016 IEEE.