Browsing by Subject "Quartz tuning forks"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Imaging capability of pseudomorphic high electron mobility transistors, AlGaN/GaN, and Si micro-Hall probes for scanning Hall probe microscopy between 25 and 125 °c(American Vacuum Society, 2009) Akram, R.; Dede, M.; Oral, A.The authors present a comparative study on imaging capabilities of three different micro-Hall probe sensors fabricated from narrow and wide band gap semiconductors for scanning hall probe microscopy at variable temperatures. A novel method of quartz tuning fork atomic force microscopy feedback has been used which provides extremely simple operation in atmospheric pressures, high-vacuum, and variable-temperature environments and enables very high magnetic and reasonable topographic resolution to be achieved simultaneously. Micro-Hall probes were produced using optical lithography and reactive ion etching process. The active area of all different types of Hall probes were 1×1 μ m2. Electrical and magnetic characteristics show Hall coefficient, carrier concentration, and series resistance of the hall sensors to be 10 mG, 6.3× 1012 cm-2, and 12 k at 25 °C and 7 mG, 8.9× 1012 cm-2 and 24 k at 125 °C for AlGaNGaN two-dimensional electron gas (2DEG), 0.281 mG, 2.2× 1014 cm-2, and 139 k at 25 °C and 0.418 mG, 1.5× 1014 cm-2 and 155 k at 100 °C for Si and 5-10 mG, 6.25× 1012 cm-2, and 12 k at 25 °C for pseudomorphic high electron mobility transistors (PHEMT) 2DEG Hall probe. Scan of magnetic field and topography of hard disc sample at variable temperatures using all three kinds of probes are presented. The best low noise image was achieved at temperatures of 25, 100, and 125 °C for PHEMT, Si, and AlGaNGaN Hall probes, respectively. This upper limit on the working temperature can be associated with their band gaps and noise associated with thermal activation of carriers at high temperatures.Item Open Access Scanning hall probe microscopy (SHPM) using quartz crystal AFM feedback(2005) Ürkmen, KorayScanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of ~50nm & 7mG/ Hz at room temperature. In the SHPM technique, Scanning Tunneling Microscope (STM) or Atomic Force Microscope (AFM) feedback is usually used for bringing the Hall sensor into close proximity of the sample. In the latter, the Hall probe has to be integrated with an AFM cantilever in a complicated microfabrication process. In this work, we have eliminated the difficult cantileverHall probe integration process; a Hall sensor is simply glued at the end of Quartz crystals, which are used as a force sensor. The sensor assembly is dithered at the resonance frequency and the quartz force sensor output is detected with a Lock-in and PLL system. SHPM electronics is modified to detect AFM topography and the phase, along with the magnetic field image. NIST MIRS (Magnetic Referance Sample) (Hard Disk) sample, 100 MB high capacity zip disk and Garnet sample are imaged with the Quartz Crystal AFM feedback and the performance is found to be comparable with the SHPM using STM feedback. Quartz Crystal AFM feedback offers a very simple sensor fabrication and operation in SHPM. This method eliminates the necessity of conducting samples for SHPM.