Browsing by Subject "Quantum-information processing"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Generation of long-living entanglement between two separate three-level atoms(The American Physical Society, 2005) Çakir, Ö.; Dung, H. T.; Knöll, L.; Welsch, Dirk- GunnarA scheme for nonconditional generation of long-living maximally entangled states between two spatially well separated atoms is proposed. In the scheme, A-type atoms pass a resonatorlike equipment of dispersing and absorbing macroscopic bodies giving rise to body-assisted electromagnetic field resonances of well-defined heights and widths. Strong atom-field coupling is combined with weak atom-field coupling to realize entanglement transfer from the dipole-allowed transitions to the dipole-forbidden transitions, whereby the entanglement is preserved when the atoms depart from the bodies and from each other. The theory is applied to the case of atoms passing by a microsphere.Item Open Access Quantum information processing in solid states: A critique of two-level approximation(World Scientific Publishing Co., 2005) Savran K.; Hakioğlu T.We examine the effect of multilevels on decoherence and dephasing properties of a quantum system consisting of a non-ideal two level subspace, identified as the qubit and a finite set of higher energy levels above this qubit subspace. The whole system is under interaction with an environmental bath through a Caldeira-Leggett type coupling. The model that we use is an rf-SQUID under macroscopic quantum coherence and coupled inductively to a flux noise characterized by an environmental spectrum. The model interaction can generate dipole couplings which can be appreciable for a number of high levels. The decoherence properties of the qubit subspace is examined numerically using the master equation formalism of the system’s reduced density matrix. We numerically examine the relaxation and dephasing times as the environmental frequency spectrum, and the multilevel system parameters are varied at zero temperature. We observe that, these time scales receive contribution from all available energies in the noise spectrum (even well above the system’s energy scales) stressing the dominant role played by the non-resonant (virtual) transitions. The relaxation and dephasing times calculated, strongly depend on the number of levels within the range of levels for which appreciable couplings are produced. Under the influence of these effects, we remark that the validity of the two level approximation is restricted not by the temperature but by these dipole couplings as well as the availability of the environmental modes at low temperatures. © 2005 by World Scientific Publishing Co. Pte. Ltd.