Browsing by Subject "Quantum mechanics"
Now showing 1 - 13 of 13
- Results Per Page
- Sort Options
Item Open Access Colorimetric and near-absolute polarization-insensitive refractive-index sensing in all-dielectric guided-mode resonance based metasurface(American Chemical Society, 2019) Yıldırım, Deniz Umut; Ghobadi, Amir; Soydan, Mahmut Can; Gökbayrak, Murat; Toprak, Ahmet; Bütün, Bayram; Özbay, EkmelColorimetric detection of target molecules with insensitivity to incident-light polarization has attracted considerable attention in recent years. This resulted from the ability to provide rapid output and reduced assay times as a result of color changes upon altering the environment that are easily distinguishable by the naked eye. In this paper, we propose a highly sensitive refractive-index sensor, utilizing the excitation of guided modes of a novel two-dimensional periodically modulated dielectric grating-waveguide structure. The optimized nanosensor can numerically excite guided-mode resonances with an ultranarrow linewidth (full width at half-maximum) of 0.58 nm. Sensitivity is numerically investigated by considering the deposition of dielectric layers on the structure. For a layer thickness of 30 nm, the maximum sensitivity reached as high as 110 nm/refractive index unit (RIU), resulting in a very high figure of merit of 190. The fabricated devices with 30 nm aluminum oxide and zinc oxide coatings achieved a maximum sensitivity of 235.2 nm/RIU with a linewidth of 19 nm. Colorimetric detection with polarization insensitivity is confirmed practically by a simple optical microscope. Samples with different coatings have been observed to have clearly distinct colors, while the color of each sample is nearly identical upon azimuthal rotation. Excellent agreement is obtained between the numerical and experimental results regarding the spectral position of the resonances and sensitivity. The proposed device is, therefore, highly promising in efficient, highly sensitive, almost lossless, and compact molecular diagnostics in the field of biomedicine with personalized, label-free, early point-of-care diagnosis and field analysis, drug detection, and environmental monitoring.Item Open Access Density profile of a Bose-Einstein condensate inside a pancake-shaped trap: Observational consequences of the dimensional cross-over in the scattering properties(Elsevier Science B.V., 2002) Tanatar, Bilal; Minguzzi, A.; Vignolo, P.; Tosi, M. P.It is theoretically well known that two-dimensionality of the scattering events in a Bose-Einstein condensate introduces a logarithmic dependence on density in the coupling constant entering a mean-field theory of the equilibrium density profile, which becomes dominant as the s-wave scattering length gets larger than the condensate thickness. We trace the regions of experimentally accessible system parameters for which the cross-over between different dimensionality behaviors in the scattering properties may become observable through in situ imaging of the condensed cloud with varying trap anisotropy and scattering length.Item Open Access Effect of fractional Fourier transformation on time-frequency distributions belonging to the Cohen class(Institute of Electrical and Electronics Engineers, 1996-02) Özaktaş, Haldun M.; Erkaya, N.; Kutay, M. A.We consider the Cohen (1989) class of time-frequency distributions, which can be obtained from the Wigner distribution by convolving it with a kernel characterizing that distribution. We show that the time-frequency distribution of the fractional Fourier transform of a function is a rotated version of the distribution of the original function, if the kernel is rotationally symmetric. Thus, the fractional Fourier transform corresponds to rotation of a relatively large class of time-frequency representations (phase-space representations), confirming the important role this transform plays in the study of such representations.Item Open Access Formation of quantum structures on a single nanotube by modulating hydrogen adsorption(American Physical Society, 2003) Gülseren, O.; Yildirim, T.; Çıracı, SalimUsing first-principles density functional calculations we showed that quantum structures can be generated on a single carbon nanotube by modulating the adsorption of hydrogen atoms. The band gap of the hydrogen-free zone of the tube widens in the adjacent hydrogen covered zone. The sudden variation of the band gap leads to band offsets at the conduction- and valence-band edges. At the end, the band gap of the whole system is modulated along the axis of the tube, which generates quantum wells or quantum dots. Specific electronic states are confined in these quantum wells. The type and radius of the nanotube and the extent and sequence of hydrogen-free and hydrogen-covered zones can provide several options to design a desired optoelectronic nanodevice.Item Open Access Giant alloyed hot injection shells enable ultralow optical gain threshold in colloidal quantum wells(American Chemical Society, 2019) Altıntaş, Yemliha; Güngör, Kıvanç; Gao, Y.; Sak, Mustafa; Quliyeva, Ulviyya; Bappi, G.; Mutlugün, Evren; Sargent, E. H.; Demir, Hilmi VolkanAs an attractive materials system for high-performance optoelectronics, colloidal nanoplatelets (NPLs) benefit from atomic-level precision in thickness, minimizing emission inhomogeneous broadening. Much progress has been made to enhance their photoluminescence quantum yield (PLQY) and photostability. However, to date, layer-by-layer growth of shells at room temperature has resulted in defects that limit PLQY and thus curtail the performance of NPLs as an optical gain medium. Here, we introduce a hot-injection method growing giant alloyed shells using an approach that reduces core/shell lattice mismatch and suppresses Auger recombination. Near-unity PLQY is achieved with a narrow full-width-at-half-maximum (20 nm), accompanied by emission tunability (from 610 to 650 nm). The biexciton lifetime exceeds 1 ns, an order of magnitude longer than in conventional colloidal quantum dots (CQDs). Reduced Auger recombination enables record-low amplified spontaneous emission threshold of 2.4 μJ cm–2under one-photon pumping. This is lower by a factor of 2.5 than the best previously reported value in nanocrystals (6 μJ cm–2 for CdSe/CdS NPLs). Here, we also report single-mode lasing operation with a 0.55 mJ cm–2 threshold under two-photoexcitation, which is also the best among nanocrystals (compared to 0.76 mJ cm–2 from CdSe/CdS CQDs in the Fabry–Pérot cavity). These findings indicate that hot-injection growth of thick alloyed shells makes ultrahigh performance NPLs.Item Open Access k · p Parametrization and linear and circular dichroism in strained monolayer (janus) transition metal dichalcogenides from first-principles(American Chemical Society, 2021-04-08) Aksu Korkmaz, Yağmur; Bulutay, Ceyhun; Sevik, C.Semiconductor monolayer transition metal dichalcogenides (TMDs) have brought a new paradigm by introducing optically addressable valley degree of freedom. Concomitantly, their high flexibility constitutes a unique platform that links optics to mechanics via valleytronics. With the intention to expedite the research in this direction, we investigated ten TMDs, namely MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2, MoSSe, MoSeTe, WSSe, and WSeTe, which particularly includes their so-called janus types (JTMDs). First, we obtained their electronic band structures using regular and hybrid density functional theory (DFT) calculations in the presence of the spin–orbit coupling and biaxial or uniaxial strain. Our DFT results indicated that against the expectations based on their reported piezoelectric behavior, JTMDs typically interpolated between the standard band properties of the constituent TMDs without producing a novel feature. Next, by fitting to our DFT data we generated both spinless and spinful k · p parameter sets which are quite accurate over the K valley where the optical activity occurs. As an important application of this parametrization, we considered the circular and linear dichroism under strain. Among the studied (J)TMDs, WTe2 stood out with its largest linear dichroism under uniaxial strain because of its narrower band gap and large K valley uniaxial deformation potential. This led us to suggest WTe2 monolayer membranes for optical polarization-based strain measurements, or conversely, as strain tunable optical polarizers.Item Open Access Ladder approximation in coupled quantum-well systems(American Physical Society, 2001) Yurtsever, A.; Tanatar, BilalWe study the contact values of the interlayer pair-correlation function in electron-electron and electron-hole double-layer systems. For this purpose the ladder approximation as generalized to multicomponent systems is used. The ladder approximation yields positive values for the interlayer gee(0) and geh(0) for all values of the density parameter rs and layer spacing d. This allows us to infer possible instabilities in the system more reliably compared to other approaches. We also investigate the effects of quantum-well width and screening on the interlayer pair-correlation functions.Item Open Access Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates(American Chemical Society, 2008) Khang, D. -Y.; Xiao, J.; Kocabaş, Coşkun; MacLaren, S.; Banks, T.; Jiang, H.; Huang, Y. Y.; Rogers, J. A.We have studied the scaling of controlled nonlinear buckling processes in materials with dimensions in the molecular range (i.e., ∼1 nm) through experimental and theoretical studies of buckling in individual single-wall carbon nanotubes on substrates of poly(dimethylsiloxane). The results show not only the ability to create and manipulate patterns of buckling at these molecular scales, but also, that analytical continuum mechanics theory can explain, quantitatively, all measurable aspects of this system. Inverse calculation applied to measurements of diameterdependent buckling wavelengths yields accurate values of the Young’s moduli of individual SWNTs. As an example of the value of this system beyond its use in this type of molecular scale metrology, we implement parallel arrays of buckled SWNTs as a class of mechanically stretchable conductor.Item Open Access Orbital magnetization of single and double quantum dots in a tight-binding model(American Physical Society, 2003) Aldea, A.; Moldoveanu, V.; Niţǎ, M.; Manolescu, A.; Gudmundsson, V.; Tanatar, BilalWe calculate the orbital magnetization of single and double quantum dots coupled both by Coulomb interaction and by electron tunneling. The electronic states of the quantum dots are calculated in a tight-binding model, and the magnetization is discussed in relation to the energy spectrum and to the edge and bulk states. We identify effects of chirality of the electronic orbits and of the anticrossing of the energy levels when the magnetic field is varied. We also consider the effects of detuning the energy spectra of the quantum dots by an external gate potential. We compare our results with the recent experiments of Oosterkamp et al. [Phys, Rev. Lett. 80, 4951 (1998)].Item Open Access Persuasive evidence for electron–nuclear coupling in diluted magnetic colloidal nanoplatelets using optically detected magnetic resonance spectroscopy(American Chemical Society, 2019) Strassberg, R.; Delikanlı, Savaş; Barak, Y.; Dehnel, J.; Kostadinov, A.; Maikov, G.; Hernandez-Martinez, P. L.; Sharma, Manoj; Demir, Hilmi Volkan; Lifshitz, E.The incorporation of magnetic impurities into semiconductor nanocrystals with size confinement promotes enhanced spin exchange interaction between photogenerated carriers and the guest spins. This interaction stimulates new magneto-optical properties with significant advantages for emerging spin-based technologies. Here we observe and elaborate on carrier–guest interactions in magnetically doped colloidal nanoplatelets with the chemical formula CdSe/Cd1–xMnxS, explored by optically detected magnetic resonance and magneto-photoluminescence spectroscopy. The host matrix, with a quasi-type II electronic configuration, introduces a dominant interaction between a photogenerated electron and a magnetic dopant. Furthermore, the data convincingly presents the interaction between an electron and nuclear spins of the doped ions located at neighboring surroundings, with consequent influence on the carrier’s spin relaxation time. The nuclear spin contribution by the magnetic dopants in colloidal nanoplatelets is considered here for the first time.Item Open Access Quantum effects of thermal conductance through atomic chains(2001) Ozpineci, A.; Çıracı, SalimWe present a formalism for an atomic scale study of phononic heat transfer. The expression of thermal energy current can be cast in the Landauer form and incorporates the transmission coefficient explicitly. Calculation of the thermal conductance of a monoatomic chain of N atoms between two reservoirs shows interesting quantum features. The conductance density appears as Lorentzian type resonances at the eigenfrequencies of the chain. At low-temperature limit the discrete vibrational frequency spectrum of a "soft" chain may reflect on the thermal conductance by giving rise to a sudden increase. At room temperature, the conductance through a "stiff" chain may oscillate with the number of chain atoms. The obtained quantum features are compared with similar effects found in the quantized electrical conductance.Item Open Access Tunneling properties of quantum dot arrays in a strong magnetic field(The American Physical Society, 2004) Moldoveanu, V.; Aldea, A.; Tanatar, BilalWe study the transport properties of coherently coupled quantum dots in the quantum Hall regime within the Landauer-Büttiker formalism which captures and explains the experimentally observed features in terms of the spectral properties of the coupled dot system. The subpeak structure of the transmittance spectrum and the charging stability diagrams are obtained and discussed. The role of the intradot and interdot Coulomb interaction are pointed out. We show the subpeak evolution with the magnetic field and predict a specific oscillatory behavior of the Hall resistance in strong magnetic field which can be experimentally tested.Item Open Access Variable and reversible quantum structures on a single carbon nanotube(2000) Kılıç, Ç.; Çıracı, Salim; Gülseren, O.; Yildirim, T.The band gap of a semiconducting single wall carbon nanotube decreases and eventually vanishes leading to metalization as a result of increasing radial deformation. This sets in a band offset between the undeformed and deformed regions of a single nanotube. Based on the superlattice calculations, we show that these features can be exploited to realize various quantum well structures on a single nanotube with variable and reversible electronic properties. These quantum structures and nanodevices incorporate mechanics and electronics.