Browsing by Subject "Quantization (signal)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access On the number of bins in equilibria for signaling games(IEEE, 2019-07) Sarıtaş, Serkan; Yüksel, Serdar; Gezici, SinanWe investigate the equilibrium behavior for the decentralized quadratic cheap talk problem in which an encoder and a decoder, viewed as two decision makers, have misaligned objective functions. In prior work, we have shown that the number of bins under any equilibrium has to be at most countable, generalizing a classical result due to Crawford and Sobel who considered sources with density supported on [0, 1]. In this paper, we refine this result in the context of exponential and Gaussian sources. For exponential sources, a relation between the upper bound on the number of bins and the misalignment in the objective functions is derived, the equilibrium costs are compared, and it is shown that there also exist equilibria with infinitely many bins under certain parametric assumptions. For Gaussian sources, it is shown that there exist equilibria with infinitely many bins.Item Open Access Unsupervised feature extraction via deep learning for histopathological classification of colon tissue images(Institute of Electrical and Electronics Engineers, 2019) Sarı, Can Taylan; Gündüz-Demir, ÇiğdemHistopathological examination is today’s gold standard for cancer diagnosis. However, this task is time consuming and prone to errors as it requires a detailed visual inspection and interpretation of a pathologist. Digital pathology aims at alleviating these problems by providing computerized methods that quantitatively analyze digitized histopathological tissue images. The performance of these methods mainly rely on features that they use, and thus, their success strictly depends on the ability of these features successfully quantifying the histopathology domain. With this motivation, this paper presents a new unsupervised feature extractor for effective representation and classification of histopathological tissue images. This feature extractor has three main contributions: First, it proposes to identify salient subregions in an image, based on domain-specific prior knowledge, and to quantify the image by employing only the characteristics of these subregions instead of considering the characteristics of all image locations. Second, it introduces a new deep learning based technique that quantizes the salient subregions by extracting a set of features directly learned on image data and uses the distribution of these quantizations for image representation and classification. To this end, the proposed deep learning based technique constructs a deep belief network of restricted Boltzmann machines (RBMs), defines the activation values of the hidden unit nodes in the final RBM as the features, and learns the quantizations by clustering these features in an unsupervised way. Third, this extractor is the first example of successfully using restricted Boltzmann machines in the domain of histopathological image analysis. Our experiments on microscopic colon tissue images reveal that the proposed feature extractor is effective to obtain more accurate classification results compared to its counterparts. IEEE