Browsing by Subject "Protein protein interaction"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access The BioPAX community standard for pathway data sharing(Nature Publishing Group, 2010-09) Demir, Emek; Cary, M. P.; Paley, S.; Fukuda, K.; Lemer, C.; Vastrik, I.; Wu, G.; D'Eustachio, P.; Schaefer, C.; Luciano, J.; Schacherer, F.; Martinez-Flores, I.; Hu, Z.; Jimenez-Jacinto, V.; Joshi-Tope, G.; Kandasamy, K.; Lopez-Fuentes, A. C.; Mi, H.; Pichler, E.; Rodchenkov, I.; Splendiani, A.; Tkachev, S.; Zucker, J.; Gopinath, G.; Rajasimha, H.; Ramakrishnan, R.; Shah, I.; Syed, M.; Anwar, N.; Babur, Özgün; Blinov, M.; Brauner, E.; Corwin, D.; Donaldson, S.; Gibbons, F.; Goldberg, R.; Hornbeck, P.; Luna, A.; Murray-Rust, P.; Neumann, E.; Reubenacker, O.; Samwald, M.; Iersel, Martijn van; Wimalaratne, S.; Allen, K.; Braun, B.; Whirl-Carrillo, M.; Cheung, Kei-Hoi; Dahlquist, K.; Finney, A.; Gillespie, M.; Glass, E.; Gong, L.; Haw, R.; Honig, M.; Hubaut, O.; Kane, D.; Krupa, S.; Kutmon, M.; Leonard, J.; Marks, D.; Merberg, D.; Petri, V.; Pico, A.; Ravenscroft, D.; Ren, L.; Shah, N.; Sunshine, M.; Tang R.; Whaley, R.; Letovksy, S.; Buetow, K. H.; Rzhetsky, A.; Schachter, V.; Sobral, B. S.; Doğrusöz, Uğur; McWeeney, S.; Aladjem, M.; Birney, E.; Collado-Vides, J.; Goto, S.; Hucka, M.; Novère, Nicolas Le; Maltsev, N.; Pandey, A.; Thomas, P.; Wingender, E.; Karp, P. D.; Sander, C.; Bader, G. D.Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery. © 2010 Nature America, Inc. All rights reserved.Item Open Access PATIKAmad: putting microarray data into pathway context(Wiley - V C H Verlag GmbH & Co. KGaA, 2008-06) Babur, Özgün; Colak, Recep; Demir, Emek; Doğrusöz, UğurHigh-throughput experiments, most significantly DNA microarrays, provide us with system-scale profiles. Connecting these data with existing biological networks poses a formidable challenge to uncover facts about a cell's proteome. Studies and tools with this purpose are limited to networks with simple structure, such as protein-protein interaction graphs, or do not go much beyond than simply displaying values on the network. We have built a microarray data analysis tool, named PATIKAmad, which can be used to associate microarray data with the pathway models in mechanistic detail, and provides facilities for visualization, clustering, querying, and navigation of biological graphs related with loaded microarray experiments. PATIKAmad is freely available to noncommercial users as a new module of PATIKAweb at http://web.patika.org. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA.Item Open Access PATIKAweb: a Web interface for analyzing biological pathways through advanced querying and visualization(Oxford University Press, 2006-02-01) Doğrusöz, Uğur; Erson, E. Zeynep; Giral, Erhan; Demir, Emek; Babur, Özgün; Çetintaş, Ahmet; Çolak, RecepSummary: PATIKAweb provides a Web interface for retrieving and analyzing biological pathways in the PATIKA database, which contains data integrated from various prominent public pathway databases. It features a user-friendly interface, dynamic visualization and automated layout, advanced graph-theoretic queries for extracting biologically important phenomena, local persistence capability and exporting facilities to various pathway exchange formats. © The Author 2005. Published by Oxford University Press. All rights reserved.Item Open Access The SOCS-1 gene methylation in chronic myeloid leukemia patients(John Wiley & Sons, Inc., 2007) Hatirnaz, O.; Ure, U.; Ar, C.; Akyerli, C.; Soysal, T.; Ferhanoǧlu, B.; Özçelik, T.; Ozbek, U.SOCS-1, an important protein in the JAK/STAT pathway, has a role in the down stream of BCR-ABL protein kinase. We investigated 56 CML patients and 16 controls for the methylation status of SOCS-1 gene promoter and Exon 2 regions. Exon 2 was found to be methylated in 58.9% of the patients and 93.8% of the controls [P = 0.020, OR = 0.121(0.015-0.957)%95CI]. The promoter region was found unmethylated in all patient samples and controls. Although previous studies revealed a relation between SOCS1 gene Exon-2 hypermethylation and CML development or progression, the results of this study showed no such correlation. On the contrary, our results might be indicating hypomethylation in CML patients, this hypothesis need to be studied in larger study population.