Browsing by Subject "Protein denaturation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Multiplex systems for the amplification of short tandem repeat loci: evaluation of laser fluorescence detection(1997) Ricciardone, M. D.; Lins, A. M.; Schumm, J. W.; Holland, M. M.Short tandem repeat (STR) loci are ideal markers for personal identification and for genomic mapping. Two fluorescent multiplex systems, each designed for simultaneous PCR amplification of four polymorphic STR loci (HUMCSF1PO, HUMTPOX, HUMTH01 and HUMVWFA31, and HUMF13A01, HUMFESFPS, HUMBFXIII and HUMLIPOL), were evaluated on three laser fluorescence detection instruments. Concordant DNA typing results were obtained with all three detection methods. These fluorescent multiplex STR systems offer an accurate, reproducible and versatile method of DNA profiling that is well-suited for forensic identity testing and other genetic analyses.Item Open Access Retinal proteins as model systems for membrane protein folding(Elsevier BV, 2014) Tastan, O.; Dutta, A.; Booth, P.; Klein-Seetharaman, J.Experimental folding studies of membrane proteins are more challenging than water-soluble proteins because of the higher hydrophobicity content of membrane embedded sequences and the need to provide a hydrophobic milieu for the transmembrane regions. The first challenge is their denaturation: due to the thermodynamic instability of polar groups in the membrane, secondary structures in membrane proteins are more difficult to disrupt than in soluble proteins. The second challenge is to refold from the denatured states. Successful refolding of membrane proteins has almost always been from very subtly denatured states. Therefore, it can be useful to analyze membrane protein folding using computational methods, and we will provide results obtained with simulated unfolding of membrane protein structures using the Floppy Inclusions and Rigid Substructure Topography (FIRST) method. Computational methods have the advantage that they allow a direct comparison between diverse membrane proteins. We will review here both, experimental and FIRST studies of the retinal binding proteins bacteriorhodopsin and mammalian rhodopsin, and discuss the extension of the findings to deriving hypotheses on the mechanisms of folding of membrane proteins in general. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.