Browsing by Subject "Programming models"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Auto-parallelizing stateful distributed streaming applications(2012) Schneider, S.; Hirzel, M.; Gedik, Buğra; Wu, K. -L.Streaming applications transform possibly infinite streams of data and often have both high throughput and low latency requirements. They are comprised of operator graphs that produce and consume data tuples. The streaming programming model naturally exposes task and pipeline parallelism, enabling it to exploit parallel systems of all kinds, including large clusters. However, it does not naturally expose data parallelism, which must instead be extracted from streaming applications. This paper presents a compiler and runtime system that automatically extract data parallelism for distributed stream processing. Our approach guarantees safety, even in the presence of stateful, selective, and userdefined operators. When constructing parallel regions, the compiler ensures safety by considering an operator's selectivity, state, partitioning, and dependencies on other operators in the graph. The distributed runtime system ensures that tuples always exit parallel regions in the same order they would without data parallelism, using the most efficient strategy as identified by the compiler. Our experiments using 100 cores across 14 machines show linear scalability for standard parallel regions, and near linear scalability when tuples are shuffled across parallel regions. Copyright © 2012 by the Association for Computing Machinery, Inc. (ACM).Item Open Access A catalog of stream processing optimizations(Association for Computing Machinery, 2014) Hirzel M.; Soulé R.; Schneider S.; Gedik, B.; Grimm, R.Various research communities have independently arrived at stream processing as a programming model for efficient and parallel computing. These communities include digital signal processing, databases, operating systems, and complex event processing. Since each community faces applications with challenging performance requirements, each of them has developed some of the same optimizations, but often with conflicting terminology and unstated assumptions. This article presents a survey of optimizations for stream processing. It is aimed both at users who need to understand and guide the system's optimizer and at implementers who need to make engineering tradeoffs. To consolidate terminology, this article is organized as a catalog, in a style similar to catalogs of design patterns or refactorings. To make assumptions explicit and help understand tradeoffs, each optimization is presented with its safety constraints (when does it preserve correctness?) and a profitability experiment (when does it improve performance?). We hope that this survey will help future streaming system builders to stand on the shoulders of giants from not just their own community. © 2014 ACM.