Browsing by Subject "Power spectral density"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Capacity bounds for an ultra-wideband channel model(IEEE, 2004-10) Arıkan, ErdalThere is an ongoing effort by the IEEE 802.15.3a subcommittee to reach a UWB personal area network standard. We estimate the achievable rates for such networks using a channel model specified by the same group. The analysis of this channel model is of interest in light of recent information-theoretic work on multipath fading channels which show that in order to take full advantage of such channels' capacity the transmitted signals have to be "peaky" in a certain sense. The immense bandwidth of the UWB channel also suggests at first that peaky signals should be used. However, unlike the many other wireless systems where the transmitter energy is limited, in the UWB channel only the power spectral density of the transmitted signal is constrained. As a result, the signal power can grow in proportion to the utilized bandwidth and peaky signals are not needed. © 2004 IEEE.Item Open Access Interference mitigation and awareness for improved reliability(Cambridge University Press, 2011) Arslan, H.; Yarkan S.; Şahin, M. E.; Gezici, SinanWireless systems are commonly affected by interference from various sources. For example, a number of users that operate in the same wireless network can result in multiple-access interference (MAI). In addition, for ultrawideband (UWB) systems, which operate at very low power spectral densities, strong narrowband interference (NBI) can have significant effects on the communications reliability. Therefore, interference mitigation and awareness are crucial in order to realize reliable communications systems. In this chapter, pulse-based UWB systems are considered, and the mitigation of MAI is investigated first. Then, NBI avoidance and cancelation are studied for UWB systems. Finally, interference awareness is discussed for short-rate communications, next-generation wireless networks, and cognitive radios.Mitigation of multiple-access interference (MAI)In an impulse radio ultrawideband (IR-UWB) communications system, pulses with very short durations, commonly less than one nanosecond, are transmitted with a low-duty cycle, and information is carried by the positions or the polarities of pulses [1-5]. Each pulse resides in an interval called frame, and the positions of pulses within frames are determined according to time-hopping (TH) sequences specific to each user. The low-duty cycle structure together with TH sequences provide a multiple-access capability for IR-UWB systems [6].Although IR-UWB systems can theoretically accommodate a large number of users in a multiple-access environment [2, 4], advanced signal processing techniques are necessary in practice in order to mitigate the effects of interfering users on the detection of information symbols efficiently [6]. © Cambridge University Press 2011.Item Open Access Model based analysis of the effects of respiration signal parameters on heart rate variability(IEEE, 2006) Yıldız, M.; Özbay, Y.; İder, Yusuf ZiyaIn this study, Ursino and Magosso model that includes respiration effect on cardiovascular system is implemented using Matlab. The simulations are performed to investigate the effects of respiration rate, tidal volume and expiration-inspiration time ratio on Heart Rate Variability (HRV) signals. Power Spectral Density (PSD) of HRV signals that are obtained from model simulation was determined by Periodogram and Yule-Walker methods. There is not a significant difference between the PSDs, obtained by the two methods. The simulation results that are obtained by changing respiration rate and tidal volume, are consistent with previous experimental studies reported in the literature. However the model does not include a mechanism that accounts for the effect on HRV of the rate of change of lung volume. This is conjectured to be the reason for why model results and experimental observations are not in complete conformity when the effect of inspiration-expiration time ratio on HRV is studied.Item Open Access Model based and experimental investigation of respiratory effect on the HRV power spectrum(Institute of Physics Publishing Ltd., 2006) Yildiz, M.; Ider, Y. Z.The role of respiration in the genesis of heart rate variability (HRV) has been the subject matter of many experimental and modeling studies. It is widely accepted that the high frequency (HF) peak of a HRV power spectrum, which is centered at the average respiratory frequency, is caused by mechanisms activated by respiration. On the other hand, there is a debate on the possible role of respiration in the genesis of the low frequency (LF) peak which is usually centered around 0.1 Hz. In this study, a comprehensive cardiorespiratory interaction model is used to test various hypotheses regarding the role of respiration in the LF peak of HRV. In this model, chest and abdomen circumference signals and lung volume signal are used as respiratory inputs. Simulations are made for periodic, spontaneous and slightly irregular respiratory patterns, and it is observed that the more low frequency (LF) power there in the respiratory signals, the more LF power there in the model-predicted HRV. Experiments on nine volunteers are also performed for the same respiratory patterns and similar results are observed. Furthermore, the actual measured respiratory signals are input to the model and the model predicted and the actual HRVs are compared both in time domain and also with respect to their power spectra. It is concluded in general that respiration not only is the major contributor to the genesis of the HF peak in the HRV power spectrum, but also plays an important role in the genesis of its LF peak. Thus, the LF/HF ratio, which is used to assess sympathovagal balance, cannot be correctly utilized in the absence of simultaneous monitoring of respiration during an HRV test.