Browsing by Subject "Power control"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Analysis and optimization of spectral and energy efficiency in underlaid D2D multi-cell massive MISO over rician fading(Institute of Electrical and Electronics Engineers Inc., 2023-02-15) Hashemi, R.; Kazemi, Mohammad; Mohammadi, A.This paper investigates the uplink spectral efficiency (SE) characterization and energy efficiency (EE) optimization of device-to-device (D2D) communications underlying a multi-cell massive multiple-input single-output (m-MISO) network, assuming that the channels are modeled with Rician fading. First, an analytical expression for the lower-bound of the ergodic capacity of a typical cellular user (CU) is derived with imperfect channel state information in the presence of D2D links' interference. Then, a closed-form approximate achievable SE expression for a typical D2D pair is derived considering Rician fading between D2D pairs. The asymptotic SE behavior is analyzed in strong line-of-sight (LOS) conditions for CU and D2D pairs. Also, simplified expressions are obtained for the special case of Rayleigh fading. Next, to optimize the total EE, a transmit data power allocation based on the derived rate expressions is formulated. Since the optimization problem has a non-linear and non-convex objective function, it is intractable to be solved straightforwardly. Therefore, we resort to utilizing an iterative algorithm relying on fractional programming. The numerical results show that a stronger LOS component (i.e., larger Rician K-factor) between a typical CU and its serving BS leads to a significant improvement in the system performance, while it has less effect on the D2D network.Item Open Access Exact and heuristic approaches based on noninterfering transmissions for joint gateway selection, time slot allocation, routing and power control for wireless mesh networks(Elsevier, 2017) Gokbayrak, K.; Yıldırım, E. A.Wireless mesh networks (WMNs) provide cost-effective alternatives for extending wireless communication over larger geographical areas. In this paper, given a WMN with its nodes and possible wireless links, we consider the problem of gateway node selection for connecting the network to the Internet along with operational problems such as routing, wireless transmission capacity allocation, and transmission power control for efficient use of wired and wireless resources. Under the assumption that each node of the WMN has a fixed traffic rate, our goal is to allocate capacities to the nodes in proportion to their traffic rates so as to maximize the minimum capacity-to-demand ratio, referred to as the service level. We adopt a time division multiple access (TDMA) scheme, in which a time frame on the same frequency channel is divided into several time slots and each node can transmit in one or more time slots. We propose two mixed integer linear programming formulations. The first formulation, which is based on individual transmissions in each time slot, is a straightforward extension of a previous formulation developed by the authors for a related problem under a different set of assumptions. The alternative formulation, on the other hand, is based on sets of noninterfering wireless transmissions. In contrast with the first formulation, the size of the alternative formulation is independent of the number of time slots in a frame. We identify simple necessary and sufficient conditions for simultaneous transmissions on different links of the network in the same time slot without any significant interference. Our characterization, as a byproduct, prescribes a power level for each of the transmitting nodes. Motivated by this characterization, we propose a simple scheme to enumerate all sets of noninterfering transmissions, which is used as an input for the alternative formulation. We also introduce a set of valid inequalities for both formulations. For large instances, we propose a three-stage heuristic approach. In the first stage, we solve a partial relaxation of our alternative optimization model and determine the gateway locations. This stage also provides an upper bound on the optimal service level. In the second stage, a routing tree is constructed for each gateway node computed in the first stage. Finally, in the third stage, the alternative optimization model is solved by fixing the resulting gateway locations and the routing trees from the previous two stages. For even larger networks, we propose a heuristic approach for solving the partial relaxation in the first stage using a neighborhood search on gateway locations. Our computational results demonstrate the promising performance of our exact and heuristic approaches and the valid inequalitiesItem Open Access On the Queuing Model of the energy-delay tradeoff in wireless links with power control and link adaptation(IEEE, 2019-05) Gamgam, Ege Orkun; Tunç, Çağlar; Akar, NailA transmission profile refers to a transmission power and a modulation and coding scheme to be used for packet transmissions over a wireless link. The goal of this paper is to develop transmission profile selection policies so as to minimize the average power consumption on a wireless link while satisfying a certain delay constraint given in terms of a delay violation probability. Toward the assessment of profile selection policies, a multi-regime Markov fluid queue model is proposed to obtain the average power consumption and the queue waiting time distribution which allows one to analyze the energy-delay tradeoff in queuing systems for which the packet transmission duration is allowed to depend on the delay experienced by the packet until the beginning of service. Numerical examples are presented with transmission profiles obtained from realistic LTE simulations. Several transmission profile selection policies are proposed and subsequently compared using the analytical model.Item Open Access Power adaptation for cognitive radio systems under an average sinr loss constraint in the absence of path loss information(Kluwer Academic Publishers, 2014) Dulek, B.; Gezici, Sinan; Sawai, R.; Kimura, R.An upper bound is derived on the capacity of a cognitive radio system by considering the effects of path loss and log-normal shadowing simultaneously for a single-cell network. Assuming that the cognitive radio is informed only of the shadow fading between the secondary (cognitive) transmitter and primary receiver, the capacity is achieved via the water-filling power allocation strategy under an average primary signal to secondary interference plus noise ratio loss constraint. Contrary to the perfect channel state information requirement at the secondary system (SS), the transmit power control of the SS is accomplished in the absence of any path loss estimates. For this purpose, a method for estimating the instantaneous value of the shadow fading is also presented. A detailed analysis of the proposed power adaptation strategy is conducted through various numerical simulations.