Browsing by Subject "Portable electronics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Bio-insprired optoelectronic digital nose for breath analysis(2011) Bayındır, Mehmet; Yıldırım, Adem; Yaman, Mecit; Vural, MertA novel electronic nose device is presented that can be used in disease diagnostics by exhaled breath analysis. Exhaled breath contains more than a thousand organic compounds that can be analysed to insect various diseases and metabolic activity. The novel device is an electronic nose, based on photonic bandgap fibers that can selectively guide infrared radition inside a hollow core plastic fiber. Instead of a laser line source, a broadband balackbody source is used that exploits the filtering/ guiding properties of the fibers to scan the whole mid-infrared region, making it high selectivity of volatile organic compounds possible. In addition waveguiding inside the fiber enhances the electromagnetic radiation intensity, resulting in improved infrared absorption cross-section. The fiber electronic nose can be integrated and deployed as a portable electronics device to point-of-care institutes.Item Open Access Matrix density effect on morphology of germanium nanocrystals embedded in silicon dioxide thin films(Materials Research Society, 2011) Alagoz, A. S.; Genisel, M. F.; Foss, Steinar; Finstad, T. G.; Turan, R.Flash type electronic memories are the preferred format in code storage at complex programs running on fast processors and larger media files in portable electronics due to fast write/read operations, long rewrite life, high density and low cost of fabrication. Scaling limitations of top-down fabrication approaches can be overcome in next generation flash memories by replacing continuous floating gate with array of nanocrystals. Germanium (Ge) is a good candidate for nanocrystal based flash memories due its small band gap. In this work, we present effect of silicon dioxide (SiO 2) host matrix density on Ge nanocrystals morphology. Low density Ge+SiO 2 layers are deposited between high density SiO 2 layers by using off-angle magnetron sputter deposition. After high temperature post-annealing, faceted and elongated Ge nanocrystals formation is observed in low density layers. Effects of Ge concentration and annealing temperature on nanocrystal morphology and mean size were investigated by using transmission electron microscopy. Positive correlation between stress development and nanocrystal size is observed at Raman spectroscopy measurements. We concluded that non-uniform stress distribution on nanocrystals during growth is responsible from faceted and elongated nanocrystal morphology.