BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Polysulfones"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Bacteria-immobilized electrospun fibrous polymeric webs for hexavalent chromium remediation in water
    (Springer Berlin Heidelberg, 2016) Sarioglu, O.F.; Celebioglu A.; Tekinay, T.; Uyar, Tamer
    The development of hexavalent chromium remediating fibrous biocomposite mats through the immobilization of a hexavalent chromium reducing bacterial strain, Morganella morganiiSTB5, on the surfaces of electrospun polystyrene and polysulfone webs is described. The bacteria-immobilized biocomposite webs have shown removal yields of 93.60 and 93.79 % for 10 mg/L, 99.47 and 90.78 % for 15 mg/L and 70.41 and 68.27 % for 25 mg/L of initial hexavalent chromium within 72 h, respectively, and could be reused for at least five cycles. Storage test results indicate that the biocomposite mats can be stored without losing their bioremoval capacities. Scanning electron microscopy images of the biocomposite webs demonstrate that biofilms of M. morganii STB5 adhere strongly to the fibrous polymeric surfaces and are retained after repeated cycles of use. Overall, the results suggest that reusable bacteria-immobilized fibrous biocomposite webs might be applicable for continuous hexavalent chromium remediation in water systems.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Evaluation of fiber diameter and morphology differences for electrospun fibers on bacterial immobilization and bioremediation performance
    (Elsevier, 2017-05) Sarioglu O.F.; Celebioglu A.; Tekinay, T.; Uyar, Tamer
    In this report, morphology and fiber diameter differences of electrospun polysulfone (PSU) fibers on bacterial immobilization and bioremediation performance were evaluated. PSU fibers were produced with aligned or randomly oriented morphologies, and PSU fibers with thinner and thicker diameters were also produced. PSU fibers were utilized as carrier matrices for bacterial integration and the sample showing highest bacterial immobilization was tested for bioremediation of ammonium and methylene blue dye in water. It was found that randomly oriented and thinner PSU fibers are the optimal system for bacterial immobilization, hence bioremediation studies were performed with this sample. The results demonstrated that bacteria immobilized PSU fibers are promising candidates for simultaneous removal of ammonium and methylene blue dye, and they have a potential to be used in remediation of water systems.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback