Browsing by Subject "Polymorphism, Single Nucleotide"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access CONGA: Copy number variation genotyping in ancient genomes and low-coverage sequencing data(Public Library of Science, 2022-12-14) Söylev, Arda; Çokoglu, Sevim Seda; Koptekin, Dilek; Alkan, Can; Somel, MehmetTo date, ancient genome analyses have been largely confined to the study of single nucleotide polymorphisms (SNPs). Copy number variants (CNVs) are a major contributor of disease and of evolutionary adaptation, but identifying CNVs in ancient shotgun-sequenced genomes is hampered by typical low genome coverage (<1×) and short fragments ([removed]1 kbps with F-scores >0.75 at ≥1×, and distinguish between heterozygous and homozygous states. We used CONGA to genotype 10,002 outgroup-ascertained deletions across a heterogenous set of 71 ancient human genomes spanning the last 50,000 years, produced using variable experimental protocols. A fraction of these (21/71) display divergent deletion profiles unrelated to their population origin, but attributable to technical factors such as coverage and read length. The majority of the sample (50/71), despite originating from nine different laboratories and having coverages ranging from 0.44×-26× (median 4×) and average read lengths 52-121 bps (median 69), exhibit coherent deletion frequencies. Across these 50 genomes, inter-individual genetic diversity measured using SNPs and CONGA-genotyped deletions are highly correlated. CONGA-genotyped deletions also display purifying selection signatures, as expected. CONGA thus paves the way for systematic CNV analyses in ancient genomes, despite the technical challenges posed by low and variable genome coverage. © 2022 Söylev et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Item Open Access Extreme clonality in lymphoblastoid cell lines with implications for allele specific expression analyses(2008) Plagnol V.; Uz, E.; Wallace, C.; Stevens H.; Clayton, D.; Ozcelik, T.; Todd J.A.Lymphoblastoid cell lines (LCL) are being actively and extensively used to examine the expression of specific genes and (genome-wide expression profiles, including allele specific expression assays. However, it has recently been shown that approximately 10% of human genes exhibit random patterns of monoallelic expression within single clones of LCLs. Consequently allelic imbalance studies could be significantly compromised if bulk populations of donor cells are clonal, or near clonal. Here, using X chromosome inactivation as a readout, we confirm and quantify widespread near monoclonality in two independent sets of cell lines. Consequently, we recommend where possible the use of bulk, non cell line, ex vivo cells for allele specific expression assays. © 2008 Plagnol et al.Item Open Access An integrated map of genetic variation from 1,092 human genomes(Nature Publishing Group, 2012) Altshuler, D.M.; Durbin, R.M.; Abecasis G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly P.; Eichler, E.E.; Flicek P.; Gabriel, S.B.; Gibbs, R.A.; Green, E.D.; Hurles, M.E.; Knoppers, B.M.; Korbel J.O.; Lander, E.S.; Lee, C.; Lehrach H.; Mardis, E.R.; Marth G.T.; McVean G.A.; Nickerson, D.A.; Schmidt J.P.; Sherry, S.T.; Wang, J.; Wilson, R.K.; Dinh H.; Kovar, C.; Lee, S.; Lewis L.; Muzny, D.; Reid J.; Wang, M.; Fang X.; Guo X.; Jian, M.; Jiang H.; Jin X.; Li G.; Li J.; Li Y.; Li, Z.; Liu X.; Lu, Y.; Ma X.; Su, Z.; Tai, S.; Tang, M.; Wang, B.; Wang G.; Wu H.; Wu, R.; Yin, Y.; Zhang W.; Zhao J.; Zhao, M.; Zheng X.; Zhou, Y.; Gupta, N.; Clarke L.; Leinonen, R.; Smith, R.E.; Zheng-Bradley X.; Grocock, R.; Humphray, S.; James, T.; Kingsbury, Z.; Sudbrak, R.; Albrecht, M.W.; Amstislavskiy V.S.; Borodina, T.A.; Lienhard, M.; Mertes F.; Sultan, M.; Timmermann, B.; Yaspo, M.-L.; Fulton L.; Fulton, R.; Weinstock G.M.; Balasubramaniam, S.; Burton J.; Danecek P.; Keane, T.M.; Kolb-Kokocinski, A.; McCarthy, S.; Stalker J.; Quail, M.; Davies, C.J.; Gollub J.; Webster, T.; Wong, B.; Zhan, Y.; Auton, A.; Yu F.; Bainbridge, M.; Challis, D.; Evani, U.S.; Lu J.; Nagaswamy, U.; Sabo, A.; Wang Y.; Yu J.; Coin L.J.M.; Fang L.; Li Q.; Li, Z.; Lin H.; Liu, B.; Luo, R.; Qin, N.; Shao H.; Wang, B.; Xie, Y.; Ye, C.; Yu, C.; Zhang F.; Zheng H.; Zhu H.; Garrison, E.P.; Kural, D.; Lee W.-P.; Fung Leong W.; Ward, A.N.; Wu J.; Zhang, M.; Griffin L.; Hsieh, C.-H.; Mills, R.E.; Shi X.; Von Grotthuss, M.; Zhang, C.; Daly, M.J.; Depristo, M.A.; Banks, E.; Bhatia G.; Carneiro, M.O.; Del Angel G.; Genovese G.; Handsaker, R.E.; Hartl, C.; McCarroll, S.A.; Nemesh J.C.; Poplin, R.E.; Schaffner, S.F.; Shakir, K.; Yoon, S.C.; Lihm J.; Makarov V.; Jin H.; Kim W.; Cheol Kim, K.; Rausch, T.; Beal, K.; Cunningham F.; Herrero J.; McLaren W.M.; Ritchie G.R.S.; Gottipati, S.; Keinan, A.; Rodriguez-Flores J.L.; Sabeti P.C.; Grossman, S.R.; Tabrizi, S.; Tariyal, R.; Cooper, D.N.; Ball, E.V.; Stenson P.D.; Barnes, B.; Bauer, M.; Keira Cheetham, R.; Cox, T.; Eberle, M.; Kahn, S.; Murray L.; Peden J.; Shaw, R.; Ye, K.; Batzer, M.A.; Konkel, M.K.; Walker J.A.; MacArthur, D.G.; Lek, M.; Herwig, R.; Shriver, M.D.; Bustamante, C.D.; Byrnes J.K.; De La Vega F.M.; Gravel, S.; Kenny, E.E.; Kidd J.M.; Maples, B.K.; Moreno-Estrada, A.; Zakharia F.; Halperin, E.; Baran, Y.; Craig, D.W.; Christoforides, A.; Homer, N.; Izatt, T.; Kurdoglu, A.A.; Sinari, S.A.; Squire, K.; Xiao, C.; Sebat J.; Bafna V.; Ye, K.; Burchard, E.G.; Hernandez, R.D.; Gignoux, C.R.; Haussler, D.; Katzman, S.J.; James Kent W.; Howie, B.; Ruiz-Linares, A.; Dermitzakis, E.T.; Lappalainen, T.; Devine, S.E.; Liu X.; Maroo, A.; Tallon L.J.; Rosenfeld J.A.; Michelson L.P.; Min Kang H.; Anderson P.; Angius, A.; Bigham, A.; Blackwell, T.; Busonero F.; Cucca F.; Fuchsberger, C.; Jones, C.; Jun G.; Li Y.; Lyons, R.; Maschio, A.; Porcu, E.; Reinier F.; Sanna, S.; Schlessinger, D.; Sidore, C.; Tan, A.; Kate Trost, M.; Awadalla P.; Hodgkinson, A.; Lunter G.; Marchini J.L.; Myers, S.; Churchhouse, C.; Delaneau O.; Gupta-Hinch, A.; Iqbal, Z.; Mathieson I.; Rimmer, A.; Xifara, D.K.; Oleksyk, T.K.; Fu, Y.; Liu X.; Xiong, M.; Jorde L.; Witherspoon, D.; Xing J.; Browning, B.L.; Alkan C.; Hajirasouliha I.; Hormozdiari F.; Ko, A.; Sudmant P.H.; Chen, K.; Chinwalla, A.; Ding L.; Dooling, D.; Koboldt, D.C.; McLellan, M.D.; Wallis J.W.; Wendl, M.C.; Zhang Q.; Tyler-Smith, C.; Albers, C.A.; Ayub Q.; Chen, Y.; Coffey, A.J.; Colonna V.; Huang, N.; Jostins L.; Li H.; Scally, A.; Walter, K.; Xue, Y.; Zhang, Y.; Gerstein, M.B.; Abyzov, A.; Balasubramanian, S.; Chen J.; Clarke, D.; Fu, Y.; Habegger L.; Harmanci, A.O.; Jin, M.; Khurana, E.; Jasmine Mu X.; Sisu, C.; Degenhardt J.; Stütz, A.M.; Keira Cheetham, R.; Church, D.; Michaelson J.J.; Blackburne, B.; Lindsay, S.J.; Ning, Z.; Frankish, A.; Harrow J.; Mu X.J.; Fowler G.; Hale W.; Kalra, D.; Barker J.; Kelman G.; Kulesha, E.; Radhakrishnan, R.; Roa, A.; Smirnov, D.; Streeter I.; Toneva I.; Vaughan, B.; Ananiev V.; Belaia, Z.; Beloslyudtsev, D.; Bouk, N.; Chen, C.; Cohen, R.; Cook, C.; Garner J.; Hefferon, T.; Kimelman, M.; Liu, C.; Lopez J.; Meric P.; O'Sullivan, C.; Ostapchuk, Y.; Phan L.; Ponomarov, S.; Schneider V.; Shekhtman, E.; Sirotkin, K.; Slotta, D.; Zhang H.; Barnes, K.C.; Beiswanger, C.; Cai H.; Cao H.; Gharani, N.; Henn, B.; Jones, D.; Kaye J.S.; Kent, A.; Kerasidou, A.; Mathias, R.; Ossorio P.N.; Parker, M.; Reich, D.; Rotimi, C.N.; Royal, C.D.; Sandoval, K.; Su, Y.; Tian, Z.; Tishkoff, S.; Toji L.H.; Via, M.; Wang Y.; Yang H.; Yang L.; Zhu J.; Bodmer W.; Bedoya G.; Ming, C.Z.; Yang G.; Jia You, C.; Peltonen L.; Garcia-Montero, A.; Orfao, A.; Dutil J.; Martinez-Cruzado J.C.; Brooks L.D.; Felsenfeld, A.L.; McEwen J.E.; Clemm, N.C.; Duncanson, A.; Dunn, M.; Guyer, M.S.; Peterson J.L.; Lacroute P.By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation, which is further increased by the action of purifying selection. We show that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and low-frequency variants in individuals from diverse, including admixed, populations. © 2012 Macmillan Publishers Limited. All rights reserved.Item Open Access Mdm2 Snp309 G allele displays high frequency and inverse correlation with somatic P53 mutations in hepatocellular carcinoma(Elsevier, 2010) Acun T.; Terzioǧlu-Kara, E.; Konu, O.; Ozturk, M.; Yakicier, M. C.Loss of function of the p53 protein, which may occur through a range of molecular events, is critical in hepatocellular carcinoma (HCC) evolution. MDM2, an oncogene, acts as a major regulator of the p53 protein. A polymorphism in the MDM2 promoter, SNP309 (T/G), has been shown to alter protein expression and may thus play a role in carcinogenesis. MDM2 SNP309 is also associated with HCC. However, the role of SNP309 in hepatocarcinogenesis with respect to TP53 mutations is unknown. In this study, we investigated the distribution of the MDM2 SNP309 genotype and somatic TP53 (the p53 tumor suppressor gene) mutations in 99 human HCC samples from Africa, Europe, China and Japan. Samples exhibited striking geographical differences in their distribution of SNP309 genotypes. The frequency and spectrum of p53 mutations also varied geographically; TP53 mutations were frequent in Africa, where the SNP309 T/T genotype predominated but were rare in Europe and Japan, where the SNP309 G allele was present more frequently. TP53 mutations were detected in 18% (4/22) of SNP309 T/G and G/G and 82% (18/22) of SNP309 T/T genotype holders; this difference was statistically highly significant (P-value = 0.0006). Our results indicated that the presence of the SNP309 G allele is inversely associated with the presence of somatic TP53 mutations because they only coincided in 4% of HCC cases. This finding suggests that the SNP309 G allele may functionally replace p53 mutations, and in addition to known etiological factors, may be partly responsible for differential HCC prevalence. © 2009 Elsevier B.V. All rights reserved.