Browsing by Subject "Polylactic acid"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Bacteria immobilized electrospun polycaprolactone and polylactic acid fibrous webs for remediation of textile dyes in water(Elsevier, 2017-10) Sarioglu O.F.; S. Keskin, N. O.; Celebioglu A.; Tekinay, T.; Uyar, TamerIn this study, preparation and application of novel biocomposite materials for textile dye removal which are produced by immobilization of specific bacteria onto electrospun nanofibrous webs are presented. A textile dye remediating bacterial isolate, Clavibacter michiganensis, was selected for bacterial immobilization, a commercial reactive textile dye, Setazol Blue BRF-X, was selected as the target contaminant, and electrospun polycaprolactone (PCL) and polylactic acid (PLA) nanofibrous polymeric webs were selected for bacterial integration. Bacterial adhesion onto nanofibrous webs was monitored by scanning electron microscopy (SEM) imaging and optical density (OD) measurements were performed for the detached bacteria. After achieving sufficient amounts of immobilized bacteria on electrospun nanofibrous webs, equivalent web samples were utilized for testing the dye removal capabilities. Both bacteria/PCL and bacteria/PLA webs have shown efficient remediation of Setazol Blue BRF-X dye within 48 h at each tested concentration (50, 100 and 200 mg/L), and their removal performances were very similar to the free-bacteria cells. The bacteria immobilized webs were then tested for five times of reuse at an initial dye concentration of 100 mg/L, and found as potentially reusable with higher bacterial immobilization and faster dye removal capacities at the end of the test. Overall, these findings suggest that electrospun nanofibrous webs are available platforms for bacterial integration and the bacteria immobilized webs can be used as starting inocula for use in remediation of textile dyes in wastewater systems.Item Open Access Electrospinning of cyclodextrin functionalized nanofibers and their applications(2016-08) Aytaç, ZeynepElectrospinning is a widely used versatile method to produce nanofibers with high surface to volume ratio and porous structure. Owing to the unique properties, electrospun nanofibers are of great importance as a carrier matrix for drugs; antioxidant, and antibacterial agents, flavour/fragrances. Though polymers are material of choice for producing electrospun nanofibers, it is likely to obtain nanofibers from low molecular weight molecules. Cyclodextrin (CDs) are intriguing molecules having the capability of forming inclusion complex (IC) with numerous guest molecules such as drugs, food additives, flavour/fragrances, antioxidant and antibacterial agents. Therefore, CD-ICs enhance solubility, reduce volatility, and provide controlled release of the guest molecules. Integrating CD-ICs with electrospinning opens a new door to produce remarkable materials. In this thesis, nanofibers containing CD-ICs of bioactive agents including antioxidant/antibacterial and flavour/fragrance molecules were produced via electrospinning technique. Firstly, CD-ICs of antioxidant/antibacterial compounds (gallic acid, α-tocopherol, quercetin, and thymol) were synthesized and then, added into polylactic acid or zein solutions to produce CD-IC incorporated electrospun polymeric nanofibers. Afterwards, the release behavior, antioxidant and antibacterial activity of these nanofibers were investigated. In addition, the potential use of these nanofibers as active food packaging and delivery material was revealed by packing meat samples by these nanofibers. Secondly, electrospun nanofibers were developed as a releasing material from CD-ICs of volatile flavour/fragrance molecules (geraniol, limonene, and linalool) without using polymeric matrix. The preservation of volatile compounds is shown to be possible to a great extent with antibacterial CD-IC nanofibers. Furthermore, the shelf life of flavour/fragrance molecules has been enhanced at least 50 days by CD-IC nanofibers. Finally, for the first time in the literature core-shell nanofibers were designed by using CD-IC of curcumin, an antioxidant molecule and polylactic acid solutions as core and shell, respectively. The ability of core-shell nanofibers as a drug delivery carrier was suggested by release and antioxidant activity tests. To conclude, CD-IC incorporated electrospun nanofibers produced by three different approach is shown to be used as efficient material for various applications particularly for food packaging and drug delivery.Item Open Access Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: release behavior and antioxidant activity of gallic acid(Elsevier, 2016-06) Aytac Z.; Kusku S. I.; Durgun, Engin; Uyar, TamerCyclodextrin-inclusion complexes (CD-ICs) possess great prominence in food and pharmaceutical industries due to their enhanced ability for stabilization of active compounds during processing, storage and usage. Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HPβCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF) using electrospinning technique to observe the effect of CD-ICs in the release behavior of GA into three different mediums (water, 10% ethanol and 95% ethanol). The GA incorporated PLA nanofibers (PLA/GA-NFs) were served as control. Phase solubility studies showed an enhanced solubility of GA with increasing amount of HPβCD. The detailed characterization techniques (XRD, TGA and 1H-NMR) confirmed the formation of inclusion complex between GA and HPβCD. Computational modeling studies indicated that the GA made an efficient complex with HPβCD at 1:1 either in vacuum or aqueous system. SEM images revealed the bead-free and uniform morphology of PLA/GA/HPβCD-IC-NF. The release studies of GA from PLA/GA/HPβCD-IC-NF and PLA/GA-NF were carried out in water, 10% ethanol and 95% ethanol, and the findings revealed that PLA/GA/HPβCD-IC-NF has released much more amount of GA in water and 10% ethanol system when compared to PLA/GA-NF. In addition, GA was released slowly from PLA/GA/HPβCD-IC-NF into 95% ethanol when compared to PLA/GA-NF. It was also observed that electrospinning process had no negative effect on the antioxidant activity of GA when GA was incorporated in PLA nanofibers.