Browsing by Subject "Polyhedral combinatorics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Generating facets for the independence system(Society for Industrial and Applied Mathematics, 2009) Fouilhoux, P.; Labbé, M.; Mahjoub, A. R.; Yaman, H.In this paper, we present procedures to obtain facet-defining inequalities for the independence system polytope. These procedures are defined for inequalities which are not necessarily rank inequalities. We illustrate the use of these procedures by der iving strong valid inequalities for the acyclic induced subgraph, triangle free induced subgraph, bipartite induced subgraph, and knapsack polytopes. Finally, we derive a new family of facet-defining ineq ualities for the independence system polytope by adding a set of edges to antiwebs.Item Open Access Polyhedral Approaches to Hypergraph Partitioning and Cell Formation(1994) Kandiller, LeventHypergraphs are generalizations of graphs in the sense that each hyperedge can connect more than two vertices. Hypergraphs are used to describe manufacturing environments and electrical circuits. Hypergraph partitioning in manufacturing models cell formation in Cellular Manufacturing systems. Moreover, hypergraph partitioning in VTSI design case is necessary to simplify the layout problem. There are various heuristic techniques for obtaining non-optimal hypergraph partitionings reported in the literature. In this dissertation research, optimal seeking hypergraph partitioning approaches are attacked from polyhedral combinatorics viewpoint. There are two polytopes defined on r-uniform hypergraphs in which every hyperedge has exactly r end points, in order to analyze partitioning related problems. Their dimensions, valid inequality families, facet defining inequalities are investigated, and experimented via random test problems. Cell formation is the first stage in designing Cellular Manufacturing systems. There are two new cell formation techniques based on combinatorial optimization principles. One uses graph approximation, creation of a flow equivalent tree by successively solving maximum flow problems and a search routine. The other uses the polynomially solvable special case of the one of the previously discussed polytopes. These new techniques are compared to six well-known cell formation algorithms in terms of different efficiency measures according to randomly generated problems. The results are analyzed statistically.