Browsing by Subject "Polydimethylsiloxane PDMS"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation(Institute of Physics Publishing, 2016) Isiksacan, Z.; Guler, M. T.; Aydogdu, B.; Bilican, I.; Elbuken, C.The conventional fabrication methods for microfluidic devices require cleanroom processes that are costly and time-consuming. We present a novel, facile, and low-cost method for rapid fabrication of polydimethylsiloxane (PDMS) molds and devices. The method consists of three main fabrication steps: female mold (FM), male mold (MM), and chip fabrication. We use a CO2 laser cutter to pattern a thin, spin-coated PDMS layer for FM fabrication. We then obtain reusable PDMS MM from the FM using PDMS/PDMS casting. Finally, a second casting step is used to replicate PDMS devices from the MM. Demolding of one PDMS layer from another is carried out without any potentially hazardous chemical surface treatment. We have successfully demonstrated that this novel method allows fabrication of microfluidic molds and devices with precise dimensions (thickness, width, length) using a single material, PDMS, which is very common across microfluidic laboratories. The whole process, from idea to device testing, can be completed in 1.5 h in a standard laboratory.Item Open Access A versatile plug microvalve for microfluidic applications(Elsevier, 2017-10) Guler, M. T.; Beyazkilic, P.; Elbuken, C.Most of the available microvalves include complicated fabrication steps and multiple materials. We present a microvalve which is inspired from macroplug valves. The plug microvalve is fabricated by boring a hole through a rigid cylindrical rod and inserting it through a microfluidic chip. It simply functions by rotating the rod which aligns or misaligns the valve port with the microchannel. The rod is made up of a rigid material for applying the valve to an elastic polydimethylsiloxane (PDMS) microchannel. The valve can also be used for a rigid channel by inserting the rod into an elastic tubing. Therefore, the presented microvalve can be used for both elastomeric and thermoplastic channels. The plug microvalve can be applied to a prefabricated microchannel and does not require modification of the mold design. We have verified the repeatability and robustness of the valve by repetitive operation cycles using a servo motor. The plug microvalve is adaptable to numerous microfluidic applications. We have shown three modes of operation for the microvalve including fluid flow control across multiple intersecting channels. Integrating the microvalve to some commonly used microfluidic designs, we demonstrated the versatility and the practicality of the microvalve for controlling flow focusing, microdroplet sorting and rapid chemical agent detection. This low-cost microvalve significantly minimizes the prototyping time for microfluidic systems.