Browsing by Subject "Poly lactic acid"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Bacteria immobilized electrospun polycaprolactone and polylactic acid fibrous webs for remediation of textile dyes in water(Elsevier, 2017-10) Sarioglu O.F.; S. Keskin, N. O.; Celebioglu A.; Tekinay, T.; Uyar, TamerIn this study, preparation and application of novel biocomposite materials for textile dye removal which are produced by immobilization of specific bacteria onto electrospun nanofibrous webs are presented. A textile dye remediating bacterial isolate, Clavibacter michiganensis, was selected for bacterial immobilization, a commercial reactive textile dye, Setazol Blue BRF-X, was selected as the target contaminant, and electrospun polycaprolactone (PCL) and polylactic acid (PLA) nanofibrous polymeric webs were selected for bacterial integration. Bacterial adhesion onto nanofibrous webs was monitored by scanning electron microscopy (SEM) imaging and optical density (OD) measurements were performed for the detached bacteria. After achieving sufficient amounts of immobilized bacteria on electrospun nanofibrous webs, equivalent web samples were utilized for testing the dye removal capabilities. Both bacteria/PCL and bacteria/PLA webs have shown efficient remediation of Setazol Blue BRF-X dye within 48 h at each tested concentration (50, 100 and 200 mg/L), and their removal performances were very similar to the free-bacteria cells. The bacteria immobilized webs were then tested for five times of reuse at an initial dye concentration of 100 mg/L, and found as potentially reusable with higher bacterial immobilization and faster dye removal capacities at the end of the test. Overall, these findings suggest that electrospun nanofibrous webs are available platforms for bacterial integration and the bacteria immobilized webs can be used as starting inocula for use in remediation of textile dyes in wastewater systems.Item Open Access Dual- luminophore efficient luminescent solar concentrator fabricated by low-cost 3D printing(Institute of Physics Publishing Ltd., 2022-12-23) Ebrahimisadr, S.; Olyaeefar, Babak.; Ahmadi-kandjani, S.Luminescent Solar Concentrators (LSCs), as cost-effective optical devices for photon concentration, have been showing promising applications in photovoltaic systems. Recently, LSCs are being fabricated through different methods to improve their performance and reduce the cost of fabrication. One of the most common and traditional methods of LSC fabrication is Free Radical Polymerization. In which free radicals are formed through thermal decomposition or photolysis of radical initiators. This research work introduces 3D printed LSCs based on CsPbBr3/Cs4PbBr6 Perovskite Nanocrystals (NCs) and an organic Rhodamine b luminophore mixtures. Nowadays, 3D printing technology has a wide variety of applications in industry, medicine, education, etc. 3D printing technique due to the cheap and accessible raw materials is proved to be a facile and cost-effective method to fabricate LSCs. CsPbBr3/Cs4PbBr6 Perovskites were synthesized using a modified reverse microemulsion method. Poly Lactic Acid (PLA) granules with a luminophore concentration of 0.001 wt% were used to fabricate 3D Printer filament as a polymer for LSC fabrication. XRD, FE-SEM, and EDS analysis were applied to synthesized Perovskites to prove formation of CsPbBr3/Cs4PbBr6 Perovskites. Absorption and Photoluminescence spectrum of used luminophores in LSCs were investigated. Re-absorption effect and I–V plots of prepared LSCs were studied. The I–V plot of the attached solar cell to pristine PLA and luminophore dispersed LSCs shows that the solar cell attached to the dual-luminophore LSC is approximately 122% more efficient than the one attached to pristine PLA LSC.Item Open Access Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: release behavior and antioxidant activity of gallic acid(Elsevier, 2016-06) Aytac Z.; Kusku S. I.; Durgun, Engin; Uyar, TamerCyclodextrin-inclusion complexes (CD-ICs) possess great prominence in food and pharmaceutical industries due to their enhanced ability for stabilization of active compounds during processing, storage and usage. Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HPβCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF) using electrospinning technique to observe the effect of CD-ICs in the release behavior of GA into three different mediums (water, 10% ethanol and 95% ethanol). The GA incorporated PLA nanofibers (PLA/GA-NFs) were served as control. Phase solubility studies showed an enhanced solubility of GA with increasing amount of HPβCD. The detailed characterization techniques (XRD, TGA and 1H-NMR) confirmed the formation of inclusion complex between GA and HPβCD. Computational modeling studies indicated that the GA made an efficient complex with HPβCD at 1:1 either in vacuum or aqueous system. SEM images revealed the bead-free and uniform morphology of PLA/GA/HPβCD-IC-NF. The release studies of GA from PLA/GA/HPβCD-IC-NF and PLA/GA-NF were carried out in water, 10% ethanol and 95% ethanol, and the findings revealed that PLA/GA/HPβCD-IC-NF has released much more amount of GA in water and 10% ethanol system when compared to PLA/GA-NF. In addition, GA was released slowly from PLA/GA/HPβCD-IC-NF into 95% ethanol when compared to PLA/GA-NF. It was also observed that electrospinning process had no negative effect on the antioxidant activity of GA when GA was incorporated in PLA nanofibers.