Browsing by Subject "Plasmon coupling"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Enhanced confined microwave transmission by single subwavelength apertures(2005) Çağlayan, HümeyraGrating-coupling phenomena between surface plasmons and electromagnetic waves are studied in the microwave spectrum using metallic circular apertures surrounded by an array of grooves. The measurements are performed in the microwave spectrum of 10-18 GHz, corresponding to a wavelength region of 16.7-30 mm. The metallic samples have a subwavelength hole with a diameter of 8 mm and have concentric grooves with a periodicity of 16 mm. We first present the experimental and theoretical results of enhanced microwave transmission though a subwavelength circular aperture with concentric periodic grooves around the surface plasmon resonance frequency. This is followed by transmission studies through circular annular apertures with and without concentric periodic grooves around the aperture. We demonstrate a 145-fold enhancement factor could be obtained with a subwavelength circular annular aperture surrounded by concentric periodic grooves. Moreover, we study the diffraction of electromagnetic waves from subwavelength metallic circular annular apertures in the microwave spectrum. The theoretical and experimental demonstration of the near- and far-field EM distributions for subwavelength circular apertures and circular annular apertures surrounded by concentric periodic grooves is reported. We present the angular transmission distributions from circular apertures and circular annular apertures surrounded by concentric periodic grooves. At the surface mode resonance frequency the transmitted electromagnetic waves from the subwavelength circular annular aperture surrounded by concentric periodic grooves have a strong angular confinement with an angular divergence of ±3°. This represents a fourfold reduction when compared to the angular divergence of the beam transmitted from a subwavelength aperture. These results show, that not only high transmission but also a confined beam is achieved at the surface plasmon resonance frequency using a circular annular aperture with grooves .Item Open Access Plasmon-Exciton Resonant Energy Transfer: Across Scales Hybrid Systems(Hindawi Publishing Corporation, 2016) El Kabbash, M.; Rashed, A. R.; Sreekanth, K. V.; De Luca, A.; Infusino, M.; Strangi, G.The presence of an excitonic element in close proximity of a plasmonic nanostructure, under certain conditions, may lead to a nonradiative resonant energy transfer known as Exciton Plasmon Resonant Energy Transfer (EPRET) process. The exciton-plasmon coupling and dynamics have been intensely studied in the last decade; still many relevant aspects need more in-depth studies. Understanding such phenomenon is not only important from fundamental viewpoint, but also essential to unlock many promising applications. In this review we investigate the plasmon-exciton resonant energy transfer in different hybrid systems at the nano- and mesoscales, in order to gain further understanding of such processes across scales and pave the way towards active plasmonic devices.Item Open Access Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies(Institute of Physics Publishing, 2005) Akarca-Biyikli, S. S.; Bulu, I.; Özbay, EkmelGrating-coupling phenomena between surface plasmons and electromagnetic waves were studied in the microwave spectrum using metallic gratings. Transmission measurements were carried out to observe the transmitted radiation around the surface plasmon resonance frequencies. Grating structures with subwavelength apertures were designed for transmission experiments. Measurements were made in the microwave spectrum of 10-37.5 GHz, corresponding to a wavelength region of 8-30 mm. The A1 samples had a grating periodicity of 16 mm. A 2 mm wide subwavelength slit was opened for transmission samples. Samples with one/double-sided gratings displayed remarkably enhanced transmission and directivity with respect to the reference sample without gratings. The experimental results agreed well with theoretical simulations. ∼50% transmission at 20.7 mm, ∼25-fold enhancement, and ±4° angular divergence were achieved with a ∼λ/10 aperture.Item Open Access White light generating semiconductor nanocrystal luminophors with high photometric quality(IEEE, 2008-12) Demir, Hilmi VolkanWe proposed and demonstrated warm white light generating combinations of semiconductor nanocrystal quantum dot emitters with high photometric quality including high color rendering index (~80) on LED platforms to meet requirements of future lighting. Additionally, we developed and demonstrated plasmon coupling of these nanocrystal luminophors with metal nanoparticles to control and enhance their spontaneous emission in the solid state film.