Browsing by Subject "Plasmasphere"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Estimation of 3D electron density in the Ionosphere by using fusion of GPS satellite-receiver network measurements and IRI-Plas model(IEEE, 2013) Tuna, Tuna; Arıkan, Orhan; Arikan F.; Gulyaeva, T.GPS systems can give a good approximation of the Slant Total Electron Content in a cylindrical path between the GPS satellite and the receiver. International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model can also give an estimation of the vertical electron density profile in the ionosphere for any given location and time, in the altitude range from about 50 km to 20000 km. This information can be utilized to obtain total electron content between any given receiver and satellite locations based on the IRI-Plas model. This paper explains how the fusion of measurements obtained from a GPS satellite-receiver network can be utilized together with the IRI-Plas model in order to obtain a robust 3D electron density model of the ionosphere. © 2013 ISIF ( Intl Society of Information Fusi.Item Open Access Optimization of F2 layer parameters using IRI-Plas and IONOLAB-TEC(IEEE, 2011) Şahin O.; Sezen, U.; Arikan F.; Arıkan, OrhanIn this study, the relation of the maximum ionization height (HmF2) and the critical frequency (FoF2) of F2 layer is examined within their parametric range through the International Reference Ionosphere extended towards the plasmasphere (IRI-Plas) model and the IONOLAB-TEC. HmF2 and FoF2 are optimized using an iterational loop through Non-Linear Least Squares method. HmF2 and FoF2 are obtained for various locations including Turkey for the same quiet day. Results are compared with ionosonde data where available. This study enables the modification and update of empirical and deterministic IRI Model to include instantaneous variability of the ionosphere. © 2011 IEEE.Item Open Access Optimization of F2 layer parameters using IRI-Plas model and IONOLAB Total Electron Content(IEEE, 2011) Sahin O.; Sezen, U.; Arikan F.; Arıkan, Orhan; Aktug, B.In this study, the relation of the maximum ionization height (HmF2) and the critical frequency (FoF2) of F2 layer is examined within their parametric range through the International Reference Ionosphere extended towards the plasmasphere (IRI-Plas) model and the IONOLAB-TEC (Total Electron Content) observations. HmF2 and FoF2 are optimized using an iterational loop through Non-Linear Least Squares method by also using a physical relation constraint between these two parameters. Performance evaluation of optimization algorithm is performed separately for the cases running IRI-Plas with optimized parameters and TEC input; only with optimized parameters; only with TEC and finally with no optimized parameter and TEC input. As a conclusion, it is seen that using optimized parameters and TEC together as input produces best IRI-TEC estimates. But also using only optimized parameters (without TEC update) gives estimates with also very low RMS errors and is suitable to use in optimizations. HmF2 and FoF2 estimates are obtained separately for a quiet day, positively corrupted day, negatively corrupted day, a northern latitude and a southern latitude. HmF2 and FoF2 estimation results are compared with ionosonde data where available. This study enables the modification and update of empirical and deterministic IRI Model to include instantaneous variability of the ionosphere. © 2011 IEEE.