Browsing by Subject "Pistachio nuts"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Classification of agricultural kernels using impact acoustic signal processing(2006) Onaran, İbrahimThe quality is the main factor that directly affects the price for many agricultural produces. The quality depends on different properties of the produce. Most important property is associated with health of consumers. Other properties mostly depend on the type of concerned vegetable. For instance, emptiness is important for hazelnuts while openness is crucial for the pistachio nuts. Therefore, the agricultural produces should be separated according to their quality to maintain the consumers health and increase the price of the produce in international trades. Current approaches are mostly based on invasive chemical analysis of some selected food items or sorting food items according to their color. Although chemical analysis gives the most accurate results, it is impossible to analyze large quantities of food items. The impact sound signal processing can be used to classify these produces according to their quality. These methods are inexpensive, noninvasive and most of all they can be applied in real-time to process large amount of food. Several signal processing methods for extracting impact sound features are proposed to classify the produces according to their quality. These methods are including time and frequency domain methods. Several time and frequency domain methods including Weibull parameters, maximum points and variances in time windows, DFT (Discrete Fourier Transform) coefficients around the maximum spectral points etc. are used to extract the features from the impact sound. In this study, we used hazelnut and wheat kernel impact sounds. The success rate over 90% is achieved for all types produces.Item Open Access Classification of closed and open shell pistachio nuts using principal component analysis of impact acoustics(IEEE, 2004-05) Çetin, A. Enis; Pearson, T. C.; Tewfik, A. H.An algorithm was developed to separate pistachio nuts with closed-shells from those with open-shells. It was observed that upon impact on a steel plate, nuts with closed-shells emit different sounds than nuts with open-shells. Two feature vectors extracted from the sound signals were melcepstrum coefficients and eigenvalues obtained from the principle component analysis of the autocorrelation matrix of the signals. Classification of a sound signal was done by linearly combining feature vectors from both mel-cepstrum and PCA feature vectors. An important property of the algorithm is that it is easily trainable. During the training phase, sounds of the nuts with closed-shells and open-shells were used to obtain a representative vector of each class. The accuracy of closed-shell nuts was more than 99% on the test set.Item Open Access Classification of closed-and open-shell pistachio nuts using voice-recognition technology(American Society of Agricultural and Biological Engineers, 2004) Çetin, A. Enis; Pearson, T. C.; Tewfik, A. H.An algorithm using speech recognition technology was developed to distinguish pistachio nuts with closed shells from those with open shells. It was observed that upon impact with a steel plate, nuts with closed shells emit different sounds than nuts with open shells. Features extracted from the sound signals consisted of mel-cepstrum coefficients and eigenvalues obtained from the principle component analysis (PCA) of the autocorrelation matrix of the sound signals. Classification of a sound signal was performed by linearly combining the mel-cepstrum and PCA feature vectors. An important property of the algorithm is that it is easily trainable, as are most speech-recognition algorithms. During the training phase, sounds of nuts with closed shells and with open shells were used to obtain a representative vector of each class. During the recognition phase, the feature vector from the sample under question was compared with representative vectors. The classification accuracy of closed-shell nuts was more than 99% on the validation set, which did not include the training set.