Browsing by Subject "Piperazine"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A series of 2,4(1H,3H)-quinazolinedione derivatives: synthesis and biological evaluation as potential anticancer agents(Bentham Science Publishers, 2016) Akgün, H.; Us-Yılmaz, D.; Çetin-Atalay, Rengül; Gözen, DamlaA series of 6,7-disubstituted-3-{2-[4-(substituted)piperazin-1-yl]-2-oxoethyl}quinazoline- 2,4(1H,3H)-dione derivatives (7-34) were synthesized and their structures were elucidated on the basis of analytical and spectral (UV, IR, 1H-NMR, 13C-NMR and MS) data. These synthesized compounds were evaluated for their in vitro cytotoxicities against a panel of three human cancer cell lines. According to the cytotoxicity screening results, 3-{2-[4-(4-chlorobenzyl)piperazin-1-yl]-2-oxoethyl} quinazoline-2,4(1H,3H)-dione (7) presented the highest activity against HUH-7, MCF-7 and HCT-116 cell line with the IC50 values of 2.5, 6.8 and 4.9 µM, respectively.Item Open Access Synthesis and anticancer activity evaluation of some benzothiazole-piperazine derivatives(Bentham Science Publishers B.V., 2015) Gurdal, E.E.; Buclulgan, E.; Durmaz I.; Cetin-Atalay, R.; Yarim, M.Synthesis, characterization and cytotoxic activities of ten benzothiazole-piperazine derivatives were reported. In vitro cytotoxic activities of compounds were screened against hepatocellular (HUH-7), breast (MCF-7) and colorectal (HCT-116) cancer cell lines by sulphorhodamine B assay. Based on the GI50 values of the compounds, most of the benzothiazole-piperazine derivatives are active against HUH-7, MCF-7 and HCT-116 cancer cell lines. Aroyl substituted compounds 1h and 1j were found to be the most active derivatives. In addition, further investigation of compounds 1h and 1j by Hoechst staining and FACS revealed that these compounds cause apoptosis by cell cycle arrest at subG1 phase. © 2015 Bentham Science Publishers.