BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Pigments"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Blue InGaN/GaN-based quantum electroabsorption modulators
    (IEEE, 2006) Sarı, Emre; Nizamoğlu, Sedat.; Özel, Tuncay; Demir, Hilmi Volkan
    We introduce InGaN/GaN-based quantum electroabsorption modulator that incorporates ∼5 nm thick In0.35Ga0.65N/GaN quantum structures for operation in the blue spectral range of 420-430 nm. This device exhibits an optical absorption coefficient change of ∼6000 cm-1 below the band edge at highly transmissive, blue region (at λ peak=424 nm) with a 6 V swing and emits blue light (at λpeak=440 nm) with an optical output power of 0.35 mW at a 20 mA current injection level. Unlike infrared III-V quantum modulators, this blue modulator shows a blue shift in its electroabsorption (for λ < 418 nm) with increasing applied field accross it, due to high alternating polarization fields in its quantum structures; this electroabsorption behavior is opposite to the conventional quantum confined Stark effect that features common red shift. This device holds great promise for > 10 GHz optical clock injection directly into silicon CMOS chips in the blue because of its low parasitic in-series resistance (< 100 Ω) and the possibility to make smaller device mesas for low capacitance (1.2 fF for a 10μm×10μm mesa size). Considering high-speed operation and high responsivity of silicon-on-insulator (SOI) photodetectors in the blue range, unlike in the infrared, this approach eliminates the need for on-chip hybrid integration of Si CMOS with III-V photodetectors. Furthermore, the efficient electroluminescence of this device makes it feasible to consider on-chip blue laser-modulator integration for a compact optical clocking scheme. © 2006 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    White light generation with CdSe/ZnS core-shell nanocrystals and InGaN/GaN light emitting diodes
    (IEEE, 2006) Nizamoğlu, Sedat; Özel, Sedat; Sarı, Emre; Demir, Hilmi Volkan
    We present hybrid white light sources that integrate CdSe/ZnS core-shell nanocrystals on blue InGaN/GaN light emitting diodes (LED). We report on the demonstrations of white light generation using yellow nanocrystals (λPL=580 nm) hybridized on a blue LED (λEL= 440 nm) with tristimulus coordinates of x=0.37 and y=0.25, correlated color temperature of Tc=2692 K, and color rendering index of R a=14.6; cyan and red nanocrystals (λPL=500 nm and 620 nm) on a blue LED (λEL=440 nm) with x=0.37, y=0.28, T c=3246 K, and Ra=19.6; and green, yellow, and red nanocrystals (λPL=540 nm, 580 nm, and 620 nm) on a blue LED (λEL=452 nm) with x=0.30, y=0.28, Tc =7521 K, and Ra=40.9. © 2006 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback