BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Photovoltaic performance"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Amyloid-like peptide nanofiber templated titania nanostructures as dye sensitized solar cell anodic materials
    (Royal Society of Chemistry, 2013) Acar, H.; Garifullin, R.; Aygun, L. E.; Okyay, Ali Kemal; Güler, Mustafa O.
    One-dimensional titania nanostructures can serve as a support for light absorbing molecules and result in an improvement in the short circuit current (Jsc) and open circuit voltage (Voc) as a nanostructured and high-surface-area material in dye-sensitized solar cells. Here, self-assembled amyloid-like peptide nanofibers were exploited as an organic template for the growth of one-dimensional titania nanostructures. Nanostructured titania layers were utilized as anodic materials in dye sensitized solar cells (DSSCs). The photovoltaic performance of the DSSC devices was assessed and an enhancement in the overall cell performance compared to unstructured titania was observed.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Photovoltaic nanopillar radial junction diode architecture enhanced by integrating semiconductor quantum dot nanocrystals as light harvesters
    (American Institute of Physics, 2010-09-03) Güzeltürk, B.; Mutlugün, E.; Wang, X.; Pey, K. L.; Demir, Hilmi Volkan
    We propose and demonstrate colloidal quantum dot hybridized, radial p-n junction based, nanopillar solar cells with photovoltaic performance enhanced by intimately integrating nanocrystals to serve as light harvesting agents around the light trapping pillars. By furnishing Si based nanopillar photovoltaic diodes with CdSe quantum dots, we experimentally showed up to sixfold enhancement in UV responsivity and ∼13% enhancement in overall solar conversion efficiency. The maximum responsivity enhancement achieved by incorporation of nanocrystals in the nanopillar architecture is found to be spectrally more than four times larger than the responsivity enhancement obtained using planar architecture of the same device.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback