Browsing by Subject "Photonic crystals (PC)"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Coupled-cavity structures in photonic crystals(Materials Research Society, 2002) Bayındır, Mehmet; Özbay, EkmelWe investigate the localized coupled-cavity modes in two-dimensional dielectric photonic crystals. The transmission, phase, and delay time characteristics of the various coupled-cavity structures are measured and calculated. We observed waveguiding through the coupled cavities, splitting of electromagnetic waves in waveguide ports, and switching effect in such structures. The corresponding field patterns and the transmission spectra are obtained from the finite-difference-time-domain (FDTD) simulations. We also develop a theory based on the classical wave analog of the tight-binding (TB) approximation in solid state physics. Experimental results are in good agreement with the FDTD simulations and predictions of the TB approximation.Item Open Access Highly directive radiation and negative refraction using photonic crystals(Institute of Physics Publishing, 2005) Özbay, Ekmel; Bulu, I.; Aydin, K.; Caglayan H.; Alici, K. B.; Guven, K.In this article, we present an experimental and numerical study of certain optical properties of two-dimensional dielectric photonic crystals (PCs). By modifying the band structure of a two-dimensional photonic crystal through its crystal parameters, we show how it is possible to confine the angular distribution of radiation from an embedded omnidirectional source. We then demonstrate that the anomalous band dispersions of PCs give rise to completely novel optical phenomena, in particular, the negative refraction of electromagnetic waves at the interface of a PC. We investigate the spectral negative refraction, which utilizes a transverse magnetic (TM)-polarized upper band of a PC, in detail and show that a high degree of isotropy can be achieved for the corresponding effective index of refraction. The presence of nearly a isotropic negative refractive index leads to focusing of omnidirectional sources by a PC slab lens, which can surpass certain limitations of conventional (positive refractive) lenses. These examples indicate the potential of PCs for photonics applications utilizing the band structure.