BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Photoelectron spectrum"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electronic structure of conducting organic polymers: insights from time-dependent density functional theory
    (John Wiley & Sons Ltd., 2014) Salzner, U.
    Conducting organic polymers (COPs) became an active field of research after it was discovered how thin films rather than insoluble infusible powders can be produced. The combination of the properties of plastics with those of semiconductors opened the research field of organic electronics. COPs share many electronic properties with inorganic semiconductors, but there are also major differences, e.g., the nature of the charge carriers and the amount of the exciton binding energy. Theoretical analysis has been used to interpret experimental observations early on. The polaron model that was developed from one-electron theories is still the most widely used concept. In the 1990s, time-dependent density functional theory (TDDFT) became available for routine calculations. Using TDDFT, electronic states of long oligomers can be calculated. Now UV spectra of neutral and oxidized or reduced species can be compared with in situ UV spectra recorded during doping. Likewise states of cations can be used to model photoelectron spectra. Analysis of states has resolved several puzzles which cannot be understood with the polaron model, e.g., the origin of the dual absorption band of green polymers and the origin of a 'vestigial neutral band' upon doping of long oligomers. DFT calculations also established that defect localization is not crucial for spectral changes observed during doping and that there are no bound bipolarons in COPs.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Modeling photoelectron spectra of conjugated oligomers with time-dependent density functional theory
    (American Chemical Society, 2010) Salzner, U.
    With the aim of producing accurate band structures of conjugated systems by employing the states of cations, TDDFT calculations on conjugated oligomer radical cations of thiophene, furan, and pyrrole with one to eight rings were carried out. Benchmarking of density functional theory and ab initio methods on the thiophene monomer shows that the ΔSCF ionization potential (IP) is most accurate at the B3LYP/6-311G* level. Improvement of the basis set beyond 6-311G* leads to no further changes. The IP is closer to experiment at B3LYP/6-311G* than at CCSD(T)/CCPVQZ. For longer oligomers the ΔSCF IPs decrease too fast with increasing chain length with all density functionals. CCSD/6-311G* performs well if the geometries are optimized at the CCSD level. With MP2 geometries IPs decrease too fast. Peak positions in photoelectron spectra were determined by adding appropriate TDDFT excitation energies of radical cations to the ΔSCF IPs. The agreement with experiment and with Green function calculations shows that TDDFT excited states of radical cations at the B3LYP/6-311G* level are very accurate and that absorption energies can be employed to predict photoelectron spectra.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback