Browsing by Subject "Photodegradation"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Fast and quick degradation properties of doped and capped ZnO nanoparticles under UV-Visible light radiations(Elsevier Ltd, 2016) Mittal, M.; Sharma, M.; Pandey, O. P.Undoped and Manganese (Mn) doped zinc oxide (ZnO) (Zn1- xMnxO, x=0.005, 0.01, 0.015 and 0.02) nanoparticles (NPs) capped with (1.0%) Thioglycerol (TG) has been successfully synthesized by co-precipitation method. Optical and morphological studies have been done for photophysical and structural analysis of synthesized materials. The photocatalytic activity of undoped and Mn doped ZnO NPs were investigated by degradation of crystal violet (CV) dye under UV-Visible light radiations. It has been found that Mn (1.0%) doping concentration is optimal for photophysical and photocatalytic properties. When the pH of as synthesized optimum doped ZnO NPs varied from natural pH i.e. from 6.7 to 8.0 and 10.0, the degradation of CV dye increases from 92% to 95% and 98% in 180min respectively. Further on increasing the pH of optimum doped synthesized NPs to 12.0, almost 100% degradation has been achieved in 150min. Optimum doped photocatalyst synthesized at pH-12.0 has also effectively degraded the CV dye solution in acidic and basic medium thus showed its utility in various industries. However, it has been found that 100% of CV dye quickly degraded in 30min when only 1.0% of hydrogen peroxide (H2O2) was introduced along with optimized NPs synthesized at pH-12. Kinetic studies show that the degradation of CV dye follows pseudo first and second-order kinetic law. Further an industrial anionic polyazo Sirius red F3B (SRF3B) dye has been degraded to 100% with optimized NPs synthesized at pH-12.0 in 15min only.Item Open Access Highly selective surface adsorption-induced efficient photodegradation of cationic dyes on hierarchical ZnO nanorod-decorated hydrolyzed PIM-1 nanofibrous webs(Elsevier, 2020) Ranjith, Kugalur Shanmugam; Satılmış, Bekir; Huh, Y. S.; Han, Y. -K.; Uyar, TamerSelectivity of catalysts toward harmful cationic pollutants in industrial wastewater remains challenging but is of crucial importance in environmental remediation processes. Here, we present a complex network of a hydrolyzed polymer of intrinsic microporosity (HPIM)-based electrospun nanofibrous web with surface functional decoration of ZnO nanorods (NRs) as a hierarchical platform for selective and rapid degradation of cationic dyes. Over a single species or binary mixtures, cationic dyes were selectively adsorbed by the HPIM surface, which then rapidly degraded under simultaneous photoirradiation through the ZnO NRs. Both HPIM and ZnO exhibited high electronegative surfaces, which induced the selectivity towards the cationic dyes and rapidly degraded the pollutants with the production of reactive oxygen species under photoirradiation. Further, as a free-standing web, the catalytic network could be easily separated and reused without any significant loss of catalytic activity after multiple cycles of use. The hierarchical platform of ZnO/HPIM-based heterostructures could be a promising catalytic template for selective degradation of synthetic dyes in mixed wastewater samples.Item Embargo Membrane based electrospun poly cyclodextrin nanofibers coated with ZnO nanograins by ALD Ultrafiltration blended photocatalysis for degradation of organic micropollutants(Elsevier, 2023-11-15) Ranjith, Kugalur Shanmugam; Yıldız, Zehra İrem; Khalily, Mohammad Aref; Huh, Y. S.; Han, Y.; Uyar, TamerMembranes with simultaneous selective adsorption functionality and excellent photocatalytic response have been proposed for water remediation, especially for treating textile and industrial wastewater. However, state-of-the-art membranes are easily fouled by pollutant adsorption that impacts their reusability. Here we report the development of a crosslinked electrospun poly-cyclodextrin (Poly-CD) nanofiber (NF) membrane coated by atomic layer deposition (ALD) with ZnO nanograins for the removal of pollutants from wastewater. The inherent high affinity of poly-CD NFs favored the selective adsorption of cationic impurities, and the reactive oxygen species produced by photoirradiation of the ZnO surface effectively degraded adsorbed contaminants. The NFMs has signifies that, even under the dark, they have a removal efficiency of around 80% which may be due to the high adsorption nature. Further, these NFM are highly reusable while decorating the ZnO nanograins on the NFM, which degraded the adsorbed pollutant and opened up the active site to further adsorb the dye molecule on the poly-CD surface. Under the static mode, the ZnO(100)@poly-CD NFM achieved the highest MB removal efficiency of 94.3%, followed by ZnO(25)@poly-CD, ZnO(200)@poly-CD, and poly-CD, which had removal rates of 91.3%, 87.7%, and 83.1%, respectively in 120 min of photoirradiation. Modulating the photocatalytic reaction in a flow channel, ZnO(100)@poly-CD nanofibrous membranes (NFMs) achieved 2.19-fold higher removal efficiencies (98.6% in 60 min) in a flow-through filtration system than under static conditions (a non-filtration method). Furthermore, the flow-through mode promoted the mass transfer of pollutants through NFMs, which increased reactive oxygen species production by inhibiting electron-hole recombination. Furthermore, the inherent self-cleaning function conferred by the photocatalytic activity of surface ZnO increased membrane structural stability and provided a faster removal rate.Item Open Access Novel predistortion algorithm for OFDMA(IEEE, 2009) Ali, S.; Markarian, G.; Arıkan, ErdalThe RF amplifier in a wireless communication system is usually non-linear in nature. If such an amplifier is used in OFDMA based systems, it will cause serious degradation. This degradation will be both in terms of the reduction in BER and the generation of out of band noise. In this paper we have worked on the linearization method of the amplifier. This work is on a hybrid methodology, in which estimation of the model is performed in frequency domain and compensation is performed in time domain. The downlink preamble of the IEEE802.16e system is used here for the estimation purpose. The results for the suppression of spectra are shown at the end.Item Open Access Spectroscopic investigation of polyvinyl chloride photodegradation in blends with basic traps(1999) Birer, ÖzgürPolyvinyl chloride degrades via loss of HCI when it is exposed to heat, energetic particles or photons. The mechanism is known as the zip mechanism and results in conjugated segments, polyenes. Degradation also leads to loss of mechanical properties of PVC. However, from another point of view, PVC is a Bronsted acid source, with controllable emission. Furthermore, the polyenes are small segments of polyacetylene, which itself is a very interesting one-dimensional system. Understanding the building blocks clearly helps to envisage larger systems. This study has two main goals. The first goal is benefiting from the radiation induced in-situ created HCI by incorporating basic traps into the polymer matrix and inducing optical or electrical conductivity changes. The second goal is to tune the wavelength of photodegradation by introducing sensitisers into the polymer matrix to affect the chain length of the polyenes. For the first part of the study, pH indicators, and basic forms of conducting polymers were blended with PVC and the films were irradiated with UV radiation. Optical changes were monitored with UV-Vis-NIR Spectroscopy. Similar to several other dyes tried, Bromcresol Green, and Methyl Violet changed their optical properties when they were exposed to UV radiation in the PVC matrix. However, Methyl Violet, being resistant to UV radiation, proved to be a suitable component for possible dosimetric and lithographic applications. Basic forms of polyaniline and poly-2-chloro aniline were blended with PVC, and upon irradiation of the blend, they were converted to conducting salt forms as a result of doping with in-situ created HCI. The structural changes were monitored with UV-Vis-NIR spectrophotometry as well as FTIR spectroscopy. PVC/2-CI PAN I blends gave better results compared to PVC/PANI blends. For the second part of the study, hydroquinone, anthraquinone, and anthracene were introduced into the PVC matrix. The samples were irradiated with monochromatic UV radiation at the absorption maxima of these sensitisers. It was established that the nature of polyene formation is dependent on the wavelength of irradiation as well as the amount of energy transferred to the PVC chains.