BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Photo collections"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Finding faces in news photos using both face and name information
    (IEEE, 2006) Özkan, Derya; Duygulu, Pınar
    We propose a method to associate names and faces for querying people in large news photo collections. On the assumption that a person's face is likely to appear when his/her name is mentioned in the caption, first all the faces associated with the query name are selected, Among these faces, there could be many faces corresponding to the queried person in different conditions, poses and times, but there could also be other faces corresponding to other people in the caption or some non-face images due to the errors in the face detection method used, However, in most cases, the number of corresponding faces of the queried person will be large, and these faces will be more similar to each other than to others. When the similarities of faces are represented in a graph structure, the set of most similar faces will be the densest component in the graph. In this study, we propose a graph-based method to find the most similar subset among the set of possible faces associated with the query name, where the most similar subset is likely to correspond to the faces of the queried person. © 2006 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Tag suggestr: Automatic photo tag expansion using visual information for photo sharing websites
    (Springer, 2008-12) Küçüktunç, Onur; Sevil, Sare G.; Tosun, A. Burak; Zitouni, Hilal; Duygulu, Pınar; Can, Fazlı
    In this paper, we propose an automatic photo tag expansion system for the community photo collections, such as Flickr. Our aim is to suggest relevant tags for a target photograph uploaded to the system by a user, by incorporating the visual and textual cues from other related photographs. As the first step, the system requires the user to add only a few initial tags for each uploaded photo. These initial tags are used to retrieve related photos including the same tags in their tag lists. Then the set of candidate tags collected from a large pool of photos is weighted according to the similarity of the target photo to the retrieved photo including the tag. Finally, the tags in the highest rankings are used to automatically expand the tags of the target photo. The experimental results on Flickr photos show that, the use of visual similarity of semantically relevant photos to recommend tags improves the quality of suggested tags compared to only text-based systems. © 2008 Springer Berlin Heidelberg.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback