BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Phase space translation operators"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Analysis of the magnetic translation group and investigation of a one-dimensional topological model
    (2017-08) Gholizadeh, Sina
    The periodicity of a space lattice in presence of a uniform magnetic eld is preserved. During this thesis, we will study a set of modi ed translation operators which commute with the e ective Hamiltonian of an electron in the lattice. Group theory helps us to construct matrix representations of the modi ed translation operators. These operators form ray groups. Using group projection operators, we will nd partner functions for constructed irreducible representation in order to obtain a relation which corresponds to Bloch function in a periodic lattice and is named as Bloch-type function. By multiplying a phase factor to modi ed translation operators, they will be extended to a new set of operators called magnetic translation operators so that they form a full group rather than a ray group. In a similar procedure, we will investigate displacement operators in phase space coordinate to form a full group of them. In another study, we will introduce a one dimensional model derived from Creutz model, called shifted Creutz model, in which a gap closure appears in its ground state band structure leading to timereversal symmetry breaking and subsequently giving rise to a topological phase transition. Adopting spin-orbit coupling to our model, generates a time-reversal symmetric pair of states with two-fold degeneracy. A topological investigation will be carried on both models by analyzing the band structures, phase diagram, edge states, symmetries in the models, and calculating the winding number.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback