BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Phase separations"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Silver nitrate/oligo(ethylene oxide) surfactant/mesoporous silica nanocomposite films and monoliths
    (Academic Press, 2001) Samarskaya, O.; Dag, Ö.
    A lyotropic, liquid crystalline (LC) phase of a silver nitrate/oligo(ethylene oxide), water, and acid mixture was used for one-pot synthesis of mesoporous silica materials in which Ag+ ions are uniformly distributed. We established that the AgNO3-to-surfactant mole ratio is very important in a 50 wt% surfactant/water system to preserve the hexagonal LC phase before and after the addition of the silica source. Below a 0.6 AgNO3-to-surfactant mole ratio, the mixture is liquid crystalline and serves as a template for silica polymerization. However, between 0.6 and 0.8 AgNO3-to-surfactant mole ratios, one must control the composition of the mixture during the polymerization processes. Above a 0.8 mole ratio, Ag+ ions undergo phase separation from the reaction mixture by complexing with the surfactant molecules. The resulting silica materials obtained from AgNO3/surfactant ratio above 0.8 have anisotropy but without a hexagonal mesophase. Here, we establish a AgNO3 concentration range in which the LC phase is preserved to template the synthesis of mesoporous silica, and we discuss the structural behavior of the mixtures at AgNO3/surfactant mole ratios of 0.00-2.00, using POM, PXRD, FTIR, and UV-Vis absorption spectroscopy. © 2001 Academic Press.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback