Browsing by Subject "Persistent currents"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic aharonov-bohm loops(World Scientific Publishing Co., 2005) Kulik, I. O.Fixed-number-of-electron mesoscopic or macromolecular conducting ring is shown to support persistent currents due to Aharonov-Bohm flux, and the "spontaneous" persistent currents without the flux when structural transformation in the ring is blocked by strong coupling to the externally azimuthal-symmetric environment. In the free-standing macromolecular ring, symmetry breaking removes the azimuthal periodicity which however is further restored at the increasing field. Three-site ring with one or three electrons represent an interesting quantum system which can serve as a qubit (quantum bit of information) and a qugate (quantum logical gate). © 2005 by World Scientific Publishing Co. Pte. Ltd.Item Open Access Spontaneous and persistent currents in superconductive and mesoscopic structures(American Institute of Physics, 2004) Kulik, I. O.We briefly review aspects of superconductive persistent currents in Josephson junctions of the S/I/S, S/O/S and S/N/S types, focusing on the origin of jumps in the current versus phase dependences, and discuss in more detail the persistent as well as «spontaneous» currents in the Aharonov-Bohm mesoscopic and nanoscopic (macromolecular) structures. A fixed-number-of- electrons mesoscopic or macromolecular conducting ring is shown to be unstable against structural transformation removing spatial symmetry (in particular, azimuthal periodicity) of its electron-lattice Hamiltonian. In case when the transformation is blocked by strong coupling to an external azimuthally symmetric environment, the system becomes bistable in its electronic configuration at certain number of electrons. At such a condition, the persistent current has a nonzero value even at the (almost) zero applied Aharonov-Bohm flux, and results in very high magnetic susceptibility dM/dH at small nonzero fields, followed by an oscillatory dependence at larger fields. We tentatively assume that previously observed oscillatory magnetization in cyclic metallo-organic molecules by Gatteschi et al. can be attributed to persistent currents. If this proves correct, it may open an opportunity (and, more generally, macromolecular cyclic structures may suggest the possibility) of engineering quantum computational tools based on the Aharonov-Bohm effect in ballistic nanostructures and macromolecular cyclic aggregates.