Browsing by Subject "Periodic potentials"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Hofstadter butterfly evolution in the space of two-dimensional bravais lattices(American Physical Society, 2017) Yllmaz, F.; Oktel, M. Ö.The self-similar energy spectrum of a particle in a periodic potential under a magnetic field, known as the Hofstadter butterfly, is determined by the lattice geometry as well as the external field. Recent realizations of artificial gauge fields and adjustable optical lattices in cold-atom experiments necessitate the consideration of these self-similar spectra for the most general two-dimensional lattice. In a previous work [F. Yllmaz, Phys. Rev. A 91, 063628 (2015)PLRAAN1050-294710.1103/PhysRevA.91.063628], we investigated the evolution of the spectrum for an experimentally realized lattice which was tuned by changing the unit-cell structure but keeping the square Bravais lattice fixed. We now consider all possible Bravais lattices in two dimensions and investigate the structure of the Hofstadter butterfly as the lattice is deformed between lattices with different point-symmetry groups. We model the optical lattice with a sinusoidal real-space potential and obtain the tight-binding model for any lattice geometry by calculating the Wannier functions. We introduce the magnetic field via Peierls substitution and numerically calculate the energy spectrum. The transition between the two most symmetric lattices, i.e., the triangular and the square lattices, displays the importance of bipartite symmetry featuring deformation as well as closing of some of the major energy gaps. The transitions from the square to rectangular lattice and from the triangular to centered rectangular lattices are analyzed in terms of coupling of one-dimensional chains. We calculate the Chern numbers of the major gaps and Chern number transfer between bands during the transitions. We use gap Chern numbers to identify distinct topological regions in the space of Bravais lattices.Item Open Access Landau levels in lattices with long - range hopping(American Physical Society, 2013) Atakişi, Hakan; Oktel, M. ÖzgürLandau levels (LLs) are broadened in the presence of a periodic potential, forming a barrier for accurate simulation of the fractional quantum Hall effect using cold atoms in optical lattices. Recently, it has been shown that the degeneracy of the lowest Landau level (LLL) can be restored in a tight-binding lattice if a particular form of long-range hopping is introduced. In this paper, we investigate three problems related to such quantum Hall parent Hamiltonians in lattices. First, we show that there are infinitely many long-range hopping models in which a massively degenerate manifold is formed by lattice discretizations of wave functions in the continuum LLL. We then give a general method to construct such models, which is applicable to not only the LLL but also higher LLs. We use this method to give an analytic expression for the hoppings that restores the LLL, and an integral expression for the next LL. We also consider whether the space spanned by discretized LL wave functions is as large as the space spanned by continuum wave functions, and we find the constraints on the magnetic field for this condition to be satisfied. Finally, using these constraints and the first Chern numbers, we identify the bands of the Hofstadter butterfly that correspond to continuum LLs.