BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Periodic arrays"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Efficient analysis of large phased arrays using iterative MoM with DFT-based acceleration algorithm
    (John Wiley & Sons, Inc., 2003) Ertürk, V. B.; Chou, H-T.
    A discrete Fourier transform (DFT)-based iterative method of moments (IMoM) algorithm is developed to provide an O(Ntot) computational complexity and memory storages for the efficient analysis of electromagnetic radiation/scattering from large phased arrays. Here, Ntot is the total number of unknowns. Numerical results for both printed and free-standing dipole arrays are presented to validate the algorithm's efficiency and accuracy.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Negative refraction and subwavelength focusing using left-handed composite metamaterials
    (SPIE, 2008-01) Özbay, Ekmel; Aydın, Koray
    We review experimental studies performed on left-handed metamaterials (LHM) at microwave frequencies. The metamaterial structure is composed of periodic arrays of split-ring resonators and wire meshes and exhibits a left-handed propagation band at frequencies of negative permittivity and negative permeability. Negative refraction is verified using prism shaped LHM and also by beam-shifting method. Subwavelength focusing of a point source is achieved with a resolution of 0.13λ, through a flat LHM superlens.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Wave scattering by one and many thin material strips: singular integral equations, Meshless Nystrom discretization, and periodicity caused resonances
    (IEEE, 2014) Shapoval, O. V.; Sukharevsky, Ilya. O.; Altıntaş, Ayhan; Sauleau, R.; Nosich, A. I.
    We consider the medial-line singular-integral equation technique for the analysis of the scattering by multiple thin material strips. Their discretization is performed using the Nystrom-type scheme that guarantees convergence. Numerical study of the scattering by periodic arrays of a few hundred or more strips reveals specific high-Q resonances caused by the periodicity.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback