Browsing by Subject "Pedigree"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Evidence from autoimmune thyroiditis of skewed X-chromosome inactivation in female predisposition to autoimmunity(Nature Publishing Group, 2006) Ozcelik, T.; Uz, E.; Akyerli, C. B.; Bagislar, S.; Mustafa, C. A.; Gursoy, A.; Akarsu, N.; Toruner, G.; Kamel, N.; Gullu, S.The etiologic factors in the development of autoimmune thyroid diseases (AITDs) are not fully understood. We investigated the role of skewed X-chromosome inactivation (XCI) mosaicism in female predisposition to AITDs. One hundred and ten female AITDs patients (81 Hashimoto's thyroiditis (HT), 29 Graves' disease (GD)), and 160 female controls were analyzed for the androgen receptor locus by the HpaII/polymerase chain reaction assay to assess XCI patterns in DNA extracted from peripheral blood cells. In addition, thyroid biopsy, buccal mucosa, and hair follicle specimens were obtained from five patients whose blood revealed an extremely skewed pattern of XCI, and the analysis was repeated. Skewed XCI was observed in DNA from peripheral blood cells in 28 of 83 informative patients (34%) as compared with 10 of 124 informative controls (8% P<0.0001). Extreme skewing was present in 16 patients (19%), but only in three controls (2.4% P<60;0.0001). The buccal mucosa, and although less marked, the thyroid specimens also showed skewing. Analysis of two familial cases showed that only the affected individuals demonstrate skewed XCI patterns. Based on these results, skewed XCI mosaicism may play a significant role in the pathogenesis of AITDs.Item Open Access Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: A novel gene related to nuclear envelopathies(Elsevier Ltd, 2014) Kayman-Kurekci G.; Talim, B.; Korkusuz P.; Sayar, N.; Sarioglu, T.; Oncel I.; Sharafi P.; Gundesli H.; Balci-Hayta, B.; Purali, N.; Serdaroglu-Oflazer P.; Topaloglu H.; Dincer P.We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patient's muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle. © 2014 Elsevier B.V.Item Open Access Neuro-ophthalmologic findings in humans with quadrupedal locomotion(2012) Sarac O.; Gulsuner, S.; Yildiz-Tasci, Y.; Ozcelik, T.; Kansu, T.Purpose: To report the neuro-ophthalmologic findings in four patients from the same family with cerebellar ataxia, mental retardation, and dysequilibrium syndrome (CAMRQ)2 associated with quadrupedal locomotion. Method: A case series. Results: All four patients carry the private missense mutation, WDR81 p.P856L. The brain Magnetic Resonance Imaging (MRI) of these patients revealed morphological abnormalities including mild hypoplasia of the corpus callosum, and atrophy of superior, middle, and inferior peduncles of the cerebellum. All patients had down-beat nystagmus, while two male patients additionally had bilateral temporal disc pallor along with ring-shaped macular atrophy. Conclusions: The neuro-ophthalmic examination in CAMRQ2 revealed downbeat nystagmus in all patients, and temporal disc pallor and macular atrophy in two patients. It remains to be determined whether these findings are consistent in other forms of CAMRQ with mutations in VLDLR or CA8. © 2012 Informa Healthcare USA, Inc.Item Open Access Skewed X inactivation in an X linked nystagmus family resulted from a novel, p.R229G, missense mutation in the FRMD7 gene(BMJ Group, 2008) Kaplan, Y.; Vargel, I.; Kansu, T.; Akin, B.; Rohmann, E.; Kamaci, S.; Uz, E.; Ozcelik, T.; Wollnik, B.; Akarsu, N. A.Aims: This study aimed to identify the underlying genetic defect of a large Turkish X linked nystagmus (NYS) family. Methods: Both Xp11 and Xq26 loci were tested by linkage analysis. The 12 exons and intron-exon junctions of the FRMD7 gene were screened by direct sequencing. X chromosome inactivation analysis was performed by enzymatic predigestion of DNA with a methylation-sensitive enzyme, followed by PCR of the polymorphic CAG repeat of the androgen receptor gene. Results: The family contained 162 individuals, among whom 28 had NYS. Linkage analysis confirmed the Xq26 locus. A novel missense c.686C>G mutation, which causes the substitution of a conserved arginine at amino acid position 229 by glycine (p.R229G) in exon 8 of the FRMD7 gene, was observed. This change was not documented in 120 control individuals. The clinical findings in a female who was homozygous for the mutation were not different from those of affected heterozygous females. Skewed X inactivation was remarkable in the affected females of the family. Conclusions: A novel p.R229G mutation in the FRMD7 gene causes the NYS phenotype, and skewed X inactivation influences the manifestation of the disease in X linked NYS females.