Browsing by Subject "Parallel imaging"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Automated parameter selection for accelerated mri reconstruction via low-rank modeling of local k-space neighborhoods(Elsevier GmbH, 2022-02-01) Ilıcak, Efe; Sarıtaş, Emine Ülkü; Çukur, TolgaPurpose: Image quality in accelerated MRI rests on careful selection of various reconstruction parameters. A common yet tedious and error-prone practice is to hand-tune each parameter to attain visually appealing reconstructions. Here, we propose a parameter tuning strategy to automate hybrid parallel imaging (PI) – compressed sensing (CS) reconstructions via low-rank modeling of local k-space neighborhoods (LORAKS) supplemented with sparsity regularization in wavelet and total variation (TV) domains. Methods: For low-rank regularization, we leverage a soft-thresholding operation based on singular values for matrix rank selection in LORAKS. For sparsity regularization, we employ Stein's unbiased risk estimate criterion to select the wavelet regularization parameter and local standard deviation of reconstructions to select the TV regularization parameter. Comprehensive demonstrations are presented on a numerical brain phantom and in vivo brain and knee acquisitions. Quantitative assessments are performed via PSNR, SSIM and NMSE metrics. Results: The proposed hybrid PI-CS method improves reconstruction quality compared to PI-only techniques, and it achieves on par image quality to reconstructions with brute-force optimization of reconstruction parameters. These results are prominent across several different datasets and the range of examined acceleration rates. Conclusion: A data-driven parameter tuning strategy to automate hybrid PI-CS reconstructions is presented. The proposed method achieves reliable reconstructions of accelerated multi-coil MRI datasets without the need for exhaustive hand-tuning of reconstruction parameters. © 2022Item Open Access Rapid reconstruction for parallel magnetic resonance imaging with non-Cartesian variable-density sampling trajectories(2020-01) Şenel, Celal FurkanDue to long acquisition times, the use of magnetic resonance imaging (MRI) remains challenging in some applications. Variable-density acquisitions enable scan acceleration while maintaining a desirable trade-off between signal-to-noise ratio (SNR) and spatial resolution. Several image-domain and k-space algorithms were previously proposed for parallel-imaging reconstructions of variabledensity acquisitions. However, these methods involve iterative procedures for non-Cartesian data, resulting in substantial computational burden in particular for three-dimensional (3D) reconstructions. An efficient method based on partially parallel imaging with localized sensitivities (PILS) was recently proposed for fast reconstructions of 2D non-Cartesian data. This thesis introduces a generalized image-domain implementation for 3D non-Cartesian variable-density data, and compares it against conventional gridding, PILS, and ESPIRiT (iterative self-consistent parallel imaging reconstruction using eigenvector maps) reconstructions on brain and knee data accelerated at R=2.5 to 4.2. The results indicate that the proposed 3D variable-FOV method outperforms SOS (sum of squares) and PILS methods, and performs equally or better than ESPIRiT reconstruction at less than half of the processing time required by ESPIRiT. Thus, the proposed method provides fast, high-SNR, artifact-suppressed reconstructions.Item Open Access Simultaneous use of individual and joint regularization terms in compressive sensing: joint reconstruction of multi‐channel multi‐contrast MRI acquisitions(Wiley, 2020) Kopanoğlu, E.; Güngör, Alper; Kılıç, Toygan; Sarıtaş, Emine Ülkü; Oğuz, Kader K.; Çukur, Tolga; Güven, H. E.Multi‐contrast images are commonly acquired together to maximize complementary diagnostic information, albeit at the expense of longer scan times. A time‐efficient strategy to acquire high‐quality multi‐contrast images is to accelerate individual sequences and then reconstruct undersampled data with joint regularization terms that leverage common information across contrasts. However, these terms can cause features that are unique to a subset of contrasts to leak into the other contrasts. Such leakage‐of‐features may appear as artificial tissues, thereby misleading diagnosis. The goal of this study is to develop a compressive sensing method for multi‐channel multi‐contrast magnetic resonance imaging (MRI) that optimally utilizes shared information while preventing feature leakage. Joint regularization terms group sparsity and colour total variation are used to exploit common features across images while individual sparsity and total variation are also used to prevent leakage of distinct features across contrasts. The multi‐channel multi‐contrast reconstruction problem is solved via a fast algorithm based on Alternating Direction Method of Multipliers. The proposed method is compared against using only individual and only joint regularization terms in reconstruction. Comparisons were performed on single‐channel simulated and multi‐channel in‐vivo datasets in terms of reconstruction quality and neuroradiologist reader scores. The proposed method demonstrates rapid convergence and improved image quality for both simulated and in‐vivo datasets. Furthermore, while reconstructions that solely use joint regularization terms are prone to leakage‐of‐features, the proposed method reliably avoids leakage via simultaneous use of joint and individual terms, thereby holding great promise for clinical use.