Browsing by Subject "Parallel computing platform"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Architecture framework for mapping parallel algorithms to parallel computing platforms(CEUR-WS, 2013) Tekinerdogan, Bedir; Arkin, E.Mapping parallel algorithms to parallel computing platforms requires several activities such as the analysis of the parallel algorithm, the definition of the logical configuration of the platform, and the mapping of the algorithm to the logical configuration platform. Unfortunately, in current parallel computing approaches there does not seem to be precise modeling approaches for supporting the mapping process. The lack of a clear and precise modeling approach for parallel computing impedes the communication and analysis of the decisions for supporting the mapping of parallel algorithms to parallel computing platforms. In this paper we present an architecture framework for modeling the various views that are related to the mapping process. An architectural framework organizes and structures the proposed architectural viewpoints. We propose five coherent set of viewpoints for supporting the mapping of parallel algorithms to parallel computing platforms. We illustrate the architecture framework for the mapping of array increment algorithm to the parallel computing platform. Copyright © 2013 for the individual papers by the papers' authors.Item Open Access Domain specific language for deployment of parallel applications on parallel computing platforms(Association for Computing Machinery, 2014-08) Arkın, E.; Tekinerdoğan, BedirTo increase the computing performance the current trend is towards applying parallel computing in which parallel tasks are executed on multiple nodes. The deployment of tasks on the computing platform usually impacts the overall performance and as such needs to be modelled carefully. In the architecture design community the deployment viewpoint is an important viewpoint to support this mapping process. In general the derived deployment views are visual notations that are not amenable for run-time processing, and do not scale well for deployment of large scale parallel applications. In this paper we propose a domain specific language (DSL) for modeling the deployment of parallel applications and for providing automated support for the deployment process. The DSL is based on a metamodel that is derived after a domain analysis on parallel computing. We illustrate the application of the DSL for a traffic simulation system and provide a set of important scenarios for using the DSL. © 2014 ACM.Item Open Access Model-driven approach for supporting the mapping of parallel algorithms to parallel computing platforms(Springer, Berlin, Heidelberg, 2013) Arkin, E.; Tekinerdogan, Bedir; Imre, K.M.The trend from single processor to parallel computer architectures has increased the importance of parallel computing. To support parallel computing it is important to map parallel algorithms to a computing platform that consists of multiple parallel processing nodes. In general different alternative mappings can be defined that perform differently with respect to the quality requirements for power consumption, efficiency and memory usage. The mapping process can be carried out manually for platforms with a limited number of processing nodes. However, for exascale computing in which hundreds of thousands of processing nodes are applied, the mapping process soon becomes intractable. To assist the parallel computing engineer we provide a model-driven approach to analyze, model, and select feasible mappings. We describe the developed toolset that implements the corresponding approach together with the required metamodels and model transformations. We illustrate our approach for the well-known complete exchange algorithm in parallel computing. © 2013 Springer-Verlag.Item Open Access Model-driven transformations for mapping parallel algorithms on parallel computing platforms(MDHPCL, 2013) Arkin, E.; Tekinerdoğan, BedirOne of the important problems in parallel computing is the mapping of the parallel algorithm to the parallel computing platform. Hereby, for each parallel node the corresponding code for the parallel nodes must be implemented. For platforms with a limited number of processing nodes this can be done manually. However, in case the parallel computing platform consists of hundreds of thousands of processing nodes then the manual coding of the parallel algorithms becomes intractable and error-prone. Moreover, a change of the parallel computing platform requires considerable effort and time of coding. In this paper we present a model-driven approach for generating the code of selected parallel algorithms to be mapped on parallel computing platforms. We describe the required platform independent metamodel, and the model-to-model and the model-to-text transformation patterns. We illustrate our approach for the parallel matrix multiplication algorithm. Copyright © 2013 for the individual papers by the papers' authors.