Browsing by Subject "P-hub center"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access The design of single allocation incomplete hub networks(Elsevier, 2009) Alumur, S. A.; Kara, B. Y.; Karasan, O. E.The hub location problem deals with finding the location of hub facilities and allocating the demand nodes to these hub facilities so as to effectively route the demand between any origin-destination pair. In the extensive literature on this challenging network design problem, it has widely been assumed that the subgraph induced by the hub nodes is complete. Relaxation of this basic assumption constitutes the starting point of the present work. In this study, we provide a uniform modeling treatment to all the single allocation variants of the existing hub location problems, under the incomplete hub network design. No network structure other than connectivity is imposed on the induced hub network. Within this context, the single allocation incomplete p-hub median, the incomplete hub location with fixed costs, the incomplete hub covering, and the incomplete p-hub center network design problems are defined, and efficient mathematical formulations for these problems with O (n3) variables are introduced. Computational analyses with these formulations are presented on the various instances of the CAB data set and on the Turkish network.Item Open Access Star p-hub center problem and star p-hub median problem with bounded path lengths(2012) Yaman H.; Elloumi, S.We consider two problems that arise in designing two-level star networks taking into account service quality considerations. Given a set of nodes with pairwise traffic demand and a central hub, we select p hubs and connect them to the central hub with direct links and then we connect each nonhub node to a hub. This results in a star/star network. In the first problem, called the Star p-hub Center Problem, we would like to minimize the length of the longest path in the resulting network. In the second problem, Star p-hub Median Problem with Bounded Path Lengths, the aim is to minimize the total routing cost subject to upper bound constraints on the path lengths. We propose formulations for these problems and report the outcomes of a computational study where we compare the performances of our formulations.