Browsing by Subject "Oxide superconductors"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Analytic modeling of patterned high-Tc superconductive bolometers: film and substrate interface effects(SPIE, 1998) Fardmanesh, Mehdi; Rothwarf, A.Superconducting film and substrate interface effects on the response of superconductive edge-transition bolometers are modeled with a one dimensional thermal model in closed form, for samples with large area patterns compared to the substrate thickness. The results from the model agree with experimental results on samples made of meander line patterned granular YBCO films on crystalline substrates, in both the magnitude and phase of the response versus modulation frequency up to about 100 KHz, the limit of the characterization setup. Using the fit of the calculated frequency response curves obtained from the model to the measured ones, values of the film-substrate and substrate-holder thermal boundary resistance, heat capacity of the superconducting film, and the thermal parameters of the substrate materials could be investigated. While the calculated magnitude and phase of the response of the SrTiO3 substrate samples obtained from the model is in a very good agreement with the measured values, the calculated response of the LaAlO3 and MgO substrate samples deviate slightly from the measured values at very low frequencies, increasing with an increase in the thermal conductivity of the substrate material. Using the fit of the calculated response to the measured values, film-substrate thermal boundary resistances in the range of 4.4* 10-3 to 4.4* 10-2 K-cm2-w-1 are obtained for different substrate materials. The effect of substrate optical absorption in the response of the samples is also investigated.Item Open Access Collective modes in flux line liquids(IOP, 2000) Tanatar, Bilal; Oral, A.We study the collective modes of flux line liquids such as occur in the type-II superconductors of recent interest composed of two-dimensional layered structures. Starting from the vortex-vortex interaction and employing the dielectric formalism within the random-phase approximation, we find propagating sound modes in the long-wavelength limit.Item Open Access Contraction of atomic orbitals in the oxygen anion network and superconductivity in metal oxide compounds(TÜBİTAK, 1996) Kulik, Igor OrestovichAnion network in the CuO2 plane of metal-oxide compound is considered as an intrinsic-hole metal with holes rather than electrons comprising a Fermi liquid immersed in the background of negative O2- ions. Due to the contraction of p-orbital of oxygen as a result of occupation by a hole, hole hopping between nearest neighbor sites (i, j) is dependent upon hole occupation as tij,σ = to + Vni,-σnj,-σ = W(ni,-σ + nj,-σ). Coupling parameters W and V (additive and multiplicative "contraction interaction" terms) result in the binding of holes into singlet, on-site configuration, or into triplet, nearest-neighbor-site configuration, due to W and V respectively. In the weak coupling limit, W results in the BCS type of superconductive pairing (singlet, s-wave), whereas multiplicative contraction V provides for either singlet, d-wave, or triplet, p-wave-like pairing states. It is concluded that the latter state may result in a plausible mechanism for high-Tc superconductivity in metal oxide compounds. The superconducting p-phase is shown to be in accord with recently published symmetry tests of the order parameter in oxides.