BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Oxide"

Filter results by typing the first few letters
Now showing 1 - 7 of 7
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance
    (Royal Society of Chemistry, 2011) Jiao, Z.; Wang, X.; Wang, J.; Ke, L.; Demir, Hilmi Volkan; Koh, T. W.; Sun, X. W.
    Plate-like hydrated tungsten trioxide (3WO(3)center dot H(2)O) films were grown on a fluorine doped tin oxide (FTO) coated transparent conductive substrate via an efficient, facile and template-free hydrothermal method. The film exhibited a fast coloration/bleaching response (t(c90%) = 4.3 s and t(b90%) = 1.4 s) and a high coloration efficiency (112.7 cm(2) C(-1)), which were probably due to a large surface area.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fast and quick degradation properties of doped and capped ZnO nanoparticles under UV-Visible light radiations
    (Elsevier Ltd, 2016) Mittal, M.; Sharma, M.; Pandey, O. P.
    Undoped and Manganese (Mn) doped zinc oxide (ZnO) (Zn1- xMnxO, x=0.005, 0.01, 0.015 and 0.02) nanoparticles (NPs) capped with (1.0%) Thioglycerol (TG) has been successfully synthesized by co-precipitation method. Optical and morphological studies have been done for photophysical and structural analysis of synthesized materials. The photocatalytic activity of undoped and Mn doped ZnO NPs were investigated by degradation of crystal violet (CV) dye under UV-Visible light radiations. It has been found that Mn (1.0%) doping concentration is optimal for photophysical and photocatalytic properties. When the pH of as synthesized optimum doped ZnO NPs varied from natural pH i.e. from 6.7 to 8.0 and 10.0, the degradation of CV dye increases from 92% to 95% and 98% in 180min respectively. Further on increasing the pH of optimum doped synthesized NPs to 12.0, almost 100% degradation has been achieved in 150min. Optimum doped photocatalyst synthesized at pH-12.0 has also effectively degraded the CV dye solution in acidic and basic medium thus showed its utility in various industries. However, it has been found that 100% of CV dye quickly degraded in 30min when only 1.0% of hydrogen peroxide (H2O2) was introduced along with optimized NPs synthesized at pH-12. Kinetic studies show that the degradation of CV dye follows pseudo first and second-order kinetic law. Further an industrial anionic polyazo Sirius red F3B (SRF3B) dye has been degraded to 100% with optimized NPs synthesized at pH-12.0 in 15min only.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Microstructured porous ZnO thin film for increased light scattering and improved efficiency in inverted organic photovoltaics
    (Optical Society of America, 2014) Nirmal, A.; Kyaw, A. K. K.; Sun, X. W.; Demir, Hilmi Volkan
    Microstructured porous zinc oxide (ZnO) thin film was developed and demonstrated as an electron selective layer for enhancing light scattering and efficiency in inverted organic photovoltaics. High degree of porosity was induced and controlled in the ZnO layer by incorporation of polyethylene glycol (PEG) organic template. Scanning electron microscopy, contact angle and absorption measurements prove that the ZnO: PEG ratio of 4:1 is optimal for the best performance of porous ZnO. Ensuring sufficient pore-filling, the use of porous ZnO leads to a marked improvement in device performance compared to non-porous ZnO, with 35% increase in current density and 30% increase in efficiency. Haze factor studies indicate that the performance improvement can be primarily attributed to the improved light scattering enabled by such a highly porous structure. (C) 2014 Optical Society of America
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Morphology-tailored synthesis of tungsten trioxide (Hydrate) thin films and their photocatalytic properties
    (ACS Publications, 2011-01-10) Jiao, Z. H.; Wang, J. M.; Ke, L.; Sun, X. W.; Demir, Hilmi Volkan
    Tungsten trioxide hydrate (3WO(3)center dot H(2)O) films with different morphologies were directly grown on fluorine doped tin oxide (FTO) subsi:rate via a facile crystal-seed-assisted hydrothermal method. Scanning electron microscopy (SEM) analysis showed that 3WO(3)center dot H(2)O thin films composed of platelike, wedgelike, and sheetlike nanostructures could be selectively synthesized by adding Na(2)SO(4), (NH(4))(2)SO(4), and CH(3)COONH(4) as capping agents, respectively. X-ray diffraction (XRD) studies indicated that these films were of orthorhombic structure. The as-prepared thin films after dehydration showed obvious photcicatalytic activities. The best film grown using CH(3)COONH(4) as a capping agent generated anodic photocurrents of 1.16 mA/cm(2) fork oxidization of methanol and 0.5 mA/cm(2) for water splitting with the highest photoconversion efficiency of about 0.3% under simulated solar illumination.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Resistive Switching based electro-optical modulation
    (Wiley, 2014-09-08) Battal, E.; Ozcan, A.; Okyay, Ali Kemal
    Resistive switching enables optical modulation via atomic scale modifications that induce change in the refractive index of active device materials. The formation of filaments and migration of atoms around these filaments between high resistance and low resistance states results in the modulation of the free carrier concentration and, hence, the optical constants of the material.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Toxicity of lanthanum oxide (La2O3) nanoparticles in aquatic environments
    (Royal Society of Chemistry, 2015) Balusamy, B.; Taştan, B. E.; Ergen, S. F.; Uyar, Tamer; Tekinay, T.
    This study demonstrates the acute toxicity of lanthanum oxide nanoparticles (La2O3 NP) on two sentinel aquatic species, fresh-water microalgae Chlorella sp. and the crustacean Daphnia magna. The morphology, size and charge of the nanoparticles were systematically studied. The algal growth inhibition assay confirmed absence of toxic effects of La2O3 NP on Chlorella sp., even at higher concentration (1000 mg L-1) after 72 h exposure. Similarly, no significant toxic effects were observed on D. magna at concentrations of 250 mg L-1 or less, and considerable toxic effects were noted in higher concentrations (effective concentration [EC50] 500 mg L-1; lethal dose [LD50] 1000 mg L-1). In addition, attachment of La2O3 NP on aquatic species was demonstrated using microscopy analysis. This study proved to be beneficial in understanding acute toxicity in order to provide environmental protection as part of risk assessment strategies.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Transition metal salt catalysed green synthesis of mesoporous silica nanoparticles
    (ELSEVIER BV, 2024-06-26) Amirzhanova, Assel; Ullah, Najeeb; Dağ,Ömer
    Conventionally, mesoporous silica nanoparticles are prepared by catalysing silicon alkoxides using acids or bases and are highly important in storage, delivery, and catalysis. Here, for the first time, we demonstrate that a transition metal ion (such as Ni(II), Co(II), and Mn(II)) also catalyses the hydrolysis and condensation reactions of silicon alkoxides in aqueous media without any additional acid or base to synthesize mesostructured and micro/mesostructured silica nanoparticles. An aqueous solution of a transition metal salt (specifically, nitrate salts of Ni(II), Co(II), or Mn(II), or chloride and sulphate salts of Ni(II)), 10-Lauryl ether (C12H25(OCH2CH2)10OH, C12E10) and cetyltrimethylammonium bromide (C16H33N(CH3)3Br, CTAB), and tetramethyl orthosilicate (TMOS) undergoes a precipitation reaction at room temperature, yielding ultra-small ordered mesostructured silica nanoparticles. These nanoparticles are subsequently calcined to produce mesoporous silica (meso-SiO2) with a high surface area (680–871 m2/g), large pore-volume (2.2–3.71 cm3/g), and small pore-size (1.2–3.0 nm). Moreover, the counter anions of the salts play an important role in the assembly process to obtain nanoparticles with an additional well-defined secondary pore (7.5–33.4 nm or larger). Coordinated water of the metal ion and methoxy group of the silica source react to produce a complex in which two hydroxy sides are in close vicinity to speed up the condensation reaction. We propose a hydrolysis and condensation reaction mechanism for TMOS to highlight the role of the metal ion as a catalyst.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback