Browsing by Subject "Output power"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access 10-W, 156-MHz all-fiber-integrated Er-Yb-doped fiber laser-amplifier system(Optical Society of America, 2012) Pavlov, Ihor; İlbey, Emrah; Dülgergil, Ebru; İlday, Fatih ÖmerWe demonstrate all-fiber, high-power chirped-pulse-amplifier system, operating at 1550 nm. 156-MHz soliton oscillator seeds a two-stage single-mode amplifier with output power of 10 W. After external compression, pulse duration is 0.6 ps. © 2012 Optical Society of America.Item Open Access Deep-collapse operation of capacitive micromachined ultrasonic transducers(IEEE, 2011) Olcum, S.; Yamaner F. Y.; Bozkurt, A.; Atalar, AbdullahCapacitive micromachined ultrasonic transducers (CMUTs) have been introduced as a promising technology for ultrasound imaging and therapeutic ultrasound applications which require high transmitted pressures for increased penetration, high signal-to-noise ratio, and fast heating. However, output power limitation of CMUTs compared with piezoelectrics has been a major drawback. In this work, we show that the output pressure of CMUTs can be significantly increased by deep-collapse operation, which utilizes an electrical pulse excitation much higher than the collapse voltage. We extend the analyses made for CMUTs working in the conventional (uncollapsed) region to the collapsed region and experimentally verify the findings. The static deflection profile of a collapsed membrane is calculated by an analytical approach within 0.6% error when compared with static, electromechanical finite element method (FEM) simulations. The electrical and mechanical restoring forces acting on a collapsed membrane are calculated. It is demonstrated that the stored mechanical energy and the electrical energy increase nonlinearly with increasing pulse amplitude if the membrane has a full-coverage top electrode. Utilizing higher restoring and electrical forces in the deep-collapsed region, we measure 3.5 MPa peak-to-peak pressure centered at 6.8 MHz with a 106% fractional bandwidth at the surface of the transducer with a collapse voltage of 35 V, when the pulse amplitude is 160 V. The experimental results are verified using transient FEM simulations.Item Open Access Design of high power S-band GaN MMIC power amplifiers for WiMAX applications(IEEE, 2011) Cengiz, Ömer; Kelekçi, Özgür; Arıkan, Galip Orkun; Özbay, Ekmel; Palamutçuoǧullari O.This paper reports two different S band GaN MMIC PA designs for WiMAX applications. First PA has a 42.6 dBm output power with a 55%PAE @ 3.5 GHz and 16 dB small signal gain in the 3.2-3.8 GHz frequency range. When two of these MMICs were combined by using off-chip Lange Couplers, 45.3 dBm output power with a 45%PAE @3.5Ghz and 16 dB small signal gain were obtained with less than 0.2 dB gain ripple in the 3.3-3.8 GHz frequency range. © 2011 IEEE.Item Open Access Determination of Plasma Temperature of Copper Vapour laser(Cambridge University Press, 2016) Namnabat, M.; Behrouzinia, S.; Moradi, A. R.; Khorasani, K.The output power and the temperature profile of a copper vapour laser were investigated versus frequency with various kinds of back mirror in its resonator cavity. A semi-experimental method was used for measuring the plasma temperature and obtaining the temperature profile with various back mirrors. The obtained plasma temperature through this method has good agreement with the operational temperature of the laser.Item Open Access Influence of pump noise and modulation on in-fiber amplification of broadband pulses(Optical Society of America, 2011) Gürel, Kutan; Budunoğlu, İbrahim Levent; Şenel, Çağrı; Paltani, Punya Prasanna; İlday, F. ÖmerWe investigate experimentally and theoretically the coupling of pump laser modulation and noise fluctuations to the output power of a fiber amplifier for broadband pulse trains using the modulation transfer function approach. © 2010 Optical Society of America.